首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the dependence of ANG II (10(-8) M)-induced constriction of outer medullary descending vasa recta (OMDVR) on membrane potential (Psim) and chloride ion. ANG II depolarized OMDVR, as measured by fully loading them with the voltage-sensitive dye bis[1,3-dibutylbarbituric acid-(5)] trimethineoxonol [DiBAC(4)(3)] or selectively loading their pericytes. ANG II was also observed to depolarize pericytes from a resting value of -55.6 +/- 2.6 to -26.2 +/- 5.4 mV when measured with gramicidin D-perforated patches. When measured with DiBAC(4)(3) in unstimulated vessels, neither changing extracellular Cl(-) concentration ([Cl(-)]) nor exposure to the chloride channel blocker indanyloxyacetic acid 94 (IAA-94; 30 microM) affected Psim. In contrast, IAA-94 repolarized OMDVR pretreated with ANG II. Neither IAA-94 (30 microM) nor niflumic acid (30 microM, 1 mM) affected the vasoactivity of unstimulated OMDVR, whereas both dilated ANG II-preconstricted vessels. Reduction of extracellular [Cl(-)] from 150 to 30 meq/l enhanced ANG II-induced constriction. Finally, we identified a Cl(-) channel in OMDVR pericytes that is activated by ANG II or by excision into extracellular buffer. We conclude that constriction of OMDVR by ANG II involves pericyte depolarization due, in part, to increased activity of chloride channels.  相似文献   

2.
The vasodilation response to local cutaneous heating is nitric oxide (NO) dependent and blunted in postural tachycardia but reversed by angiotensin II (ANG II) type 1 receptor (AT(1)R) blockade. We tested the hypothesis that a localized infusion of ANG II attenuates vasodilation to local heating in healthy volunteers. We heated the skin of a calf to 42 degrees C and measured local blood flow to assess the percentage of maximum cutaneous vascular conductance (%CVC(max)) in eight healthy volunteers aged 19.5-25.5 years. Initially, two experiments were performed; in one, Ringer solution was perfused in three catheters, the response to heating was measured, 2 microg/l losartan, 10 mM nitro-l-arginine (NLA), or NLA + losartan was added to perfusate, and the heat response was remeasured; in another, 10 microM ANG II was given, the heat response was measured, losartan, NLA, or NLA + losartan was added to ANG II, and the heat response was reassessed. The heat response decreased with ANG II, particularly the plateau phase (47 +/- 5 vs. 84 +/- 3 %CVC(max)). Losartan increased baseline conductance in both experiments (from 8 +/- 1 to 20 +/- 2 and 12 +/- 1 to 24 +/- 3). Losartan increased the ANG II response (83 +/- 4 vs. 91 +/- 6 in Ringer). NLA decreased both angiotensin and Ringer responses (31 +/- 4 vs. 43 +/- 3). NLA + losartan blunted the Ringer response (48 +/- 2), but the ANG II response (74 +/- 5) increased. In a second set of experiments, we used dose responses to ANG II (0.1 nM to 10 microM) with and without NLA + losartan to confirm graded responses. Sodium ascorbate (10 mM) restored the ANG II-blunted heating plateau. NO synthase and AT(1)R inhibition cause an NO-independent angiotensin-mediated vasodilation with local heating. ANG II mediates the AT(1)R blunting of local heating, which is not exclusively NO dependent, and is improved by antioxidant supplementation.  相似文献   

3.
Adenosine mediates tubuloglomerular feedback responses via activation of A(1)-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A(1)-receptor knockout (A(1)(-/-)) and wild-type (A(1)(+/+)) mice we investigated the hypothesis that A(1)-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) or ANG II treatment. The hypertensive responses to L-NAME and ANG II were clearly attenuated in A(1)(-/-) mice. Arteriolar contractions to L-NAME (10(-4) mol/l; 15 min) and cumulative ANG II application (10(-12) to 10(-6) mol/l) were lower in A(1)(-/-) mice. Simultaneous treatment with tempol (10(-4) mol/l; 15 min) attenuated arteriolar responses in A(1)(+/+) but not in A(1)(-/-) mice, suggesting differences in ROS formation. Chronic treatment with L-NAME or ANG II did not alter arteriolar responses in A(1)(-/-) mice, but enhanced maximal contractions in A(1)(+/+) mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A(1)(+/+) mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A(1)-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A(1)-receptor signaling blunts l-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.  相似文献   

4.
The intracellular calcium ([Ca(2+)](i)) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10(-8) M) caused [Ca(2+)](i) to fall in proportion to the resting [Ca(2+)](i) (r = 0. 82) of the endothelium. ANG II (10(-8) M) also inhibited both phases of the [Ca(2+)](i) response generated by bradykinin (BK, 10(-7) M), 835 +/- 201 versus 159 +/- 30 nM (peak phase) and 169 +/- 26 versus 103 +/- 14 nM (plateau phase) (means +/- SE). Luminal ANG II reduced BK (10(-7) M)-stimulated plateau [Ca(2+)](i) from 180 +/- 40 to 134 +/- 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca(2+)](i) to 113 +/- 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10(-8) M) caused [Ca(2+)](i) to fall from 352 +/- 149 to 105 +/- 37 nM. This effect occurred at a threshold ANG II concentration of 10(-10) M and was maximal at 10(-8) M. ANG II inhibited both the rate of Ca(2+) entry into [Ca(2+)](i)-depleted endothelia and the rate of Mn(2+) entry into [Ca(2+)](i)-replete endothelia. In contrast, ANG II raised [Ca(2+)](i) in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca(2+)](i) from baselines of 99 +/- 33 and 53 +/- 11 to peaks of 200 +/- 47 and 65 +/- 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca(2+)-dependent vasodilators to modulate vasomotor tone in vascular bundles.  相似文献   

5.
C Han  W W Lautt 《Nitric oxide》1999,3(2):172-179
We have previously shown that nitric oxide (NO) and adenosine suppress vasoconstriction induced by norepinephrine infusion and sympathetic nerve stimulation in the hepatic artery and superior mesenteric artery. NO is involved in the control of basal vascular tone in the superior mesenteric artery but not the hepatic artery. The vasodilation induced by adenosine is inhibited by NO in the superior mesenteric artery but not in the hepatic artery. Based on these known interactions of catecholamines, adenosine, and NO, the objective of this study was to test the hypothesis that NO modulates the interaction between vasoconstrictors and vasodilators in the hepatic artery. We examined the ability of norepinephrine to suppress adenosine-mediated vasodilation and the role of NO in this interaction. Hepatic arterial blood flow and pressure were monitored in pentobarbital-anesthetized cats. The maximum hepatic arterial vasoconstrictor response to norepinephrine infusion was potentiated by blockade of NO production using Nomega-nitro-L-arginine methyl ester (L-NAME), and the potentiation was reversed by L-arginine. The maximum dilator response to adenosine was only slightly suppressed (14.0+/-5.8%, P < 0.05) by norepinephrine infusion; however, after the NO blockade, the suppression by norepinephrine of the vasodilation induced by adenosine was substantially potentiated (45.2+/-9.1%, P < 0.05). Similar results were obtained for isoproterenol-induced vasodilation. We conclude that the interaction between these vasodilators and norepinephrine was modulated by NO which inhibited the vasoconstriction and the suppression of vasodilators caused by norepinephrine and that in the absence of NO production, norepinephrine-induced constriction and the ability to antagonize dilation is substantially potentiated.  相似文献   

6.
We hypothesized that nitric oxide (NO) opposes ANG II-induced increases in arterial pressure and reductions in renal, splanchnic, and skeletal muscle vascular conductance during dynamic exercise in normal and heart failure rats. Regional blood flow and vascular conductance were measured during treadmill running before (unblocked exercise) and after 1) ANG II AT(1)-receptor blockade (losartan, 20 mg/kg ia), 2) NO synthase (NOS) inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME); 10 mg/kg ia], or 3) ANG II AT(1)-receptor blockade + NOS inhibition (combined blockade). Renal conductance during unblocked exercise (4.79 +/- 0.31 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased after ANG II AT(1)-receptor blockade (6.53 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.12 +/- 0.20 ml x 100 g(-1) x min(-1) x mmHg(-1)) and combined inhibition (3.96 +/- 0.57 ml x 100 g(-1) x min(-1) x mmHg(-1); all P < 0.05 vs. unblocked). In heart failure rats, renal conductance during unblocked exercise (5.50 +/- 0.66 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased by ANG II AT(1)-receptor blockade (8.48 +/- 0.83 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.68 +/- 0.22 ml x 100 g(-1) x min(-1) x mmHg(-1); both P < 0.05 vs. unblocked), but it was unaltered during combined inhibition (4.65 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)). Because our findings during combined blockade could be predicted from the independent actions of NO and ANG II, no interaction was apparent between these two substances in control or heart failure animals. In skeletal muscle, L-NAME-induced reductions in conductance, compared with unblocked exercise (P < 0.05), were abolished during combined inhibition in heart failure but not in control rats. These observations suggest that ANG II causes vasoconstriction in skeletal muscle that is masked by NO-evoked dilation in animals with heart failure. Because reductions in vascular conductance between unblocked exercise and combined inhibition were less than would be predicted from the independent actions of NO and ANG II, an interaction exists between these two substances in heart failure rats. L-NAME-induced increases in arterial pressure during treadmill running were attenuated (P < 0.05) similarly in both groups by combined inhibition. These findings indicate that NO opposes ANG II-induced increases in arterial pressure and in renal and skeletal muscle resistance during dynamic exercise.  相似文献   

7.
To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.  相似文献   

8.
The mechanism of adenosine-induced vasodilation in rat diaphragm microcirculation was investigated using laser Doppler flowmetry. Adenosine (10(-5), 3.2 x 10(-5), and 10(-4) M), the nonselective adenosine agonist 5'-N-ethylcarboxamido-adenosine (NECA) (10(-8)-10(-7) M), the specific A(2A) agonist 2-p-(2-carboxyethyl)phenyl-amino-5'-N-ethyl carboxamidoadenosine (CGS-21680) (10(-8)-10(-7) M), and the adenosine agonist with higher A(1)-receptor affinity, R-N(6)-phenylisopropyladenosine (R-PIA) (10(-7), 3.2 x 10(-7), and 10(-6) M) elicited a similar degree of incremental increase of microcirculatory flow in a dose-dependent manner. The ATP-dependent potassium (K(ATP)) channel blocker glibenclamide (3.2 x 10(-6) M) significantly attenuated the vasodilation effects of these agonists. Adenosine-induced vasodilation could be significantly attenuated by the nonselective adenosine antagonist 8-(p-sulfophenyl)-theophylline (3 x 10(-5) M) or the selective A(2A) antagonist 4-(2-[7-amino-2-(2-furyl)[1,2, 4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol (ZM-241385, 10(-6) M), but not by the selective A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (5 x 10(-8) M). Adenylate cyclase inhibitor N-(cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride (MDL-12330A, 10(-5)M) effectively suppressed the vasodilator response of adenosine and forskolin. These results suggest that adenosine-induced vasodilation in rat diaphragm microcirculation is mediated through the stimulation of A(2A) receptors, which are coupled to adenylate cyclase activation and opening of the K(ATP) channel.  相似文献   

9.
NADPH oxidases (NOX) are the major source of reactive oxygen species (ROS) in the vasculature and contribute to the control of renal perfusion. The role of NOX2 in the regulation of blood pressure and afferent arteriole responsiveness was investigated in NOX2(-/-) and wild-type mice. Arteriole constrictions to ANG II (10(-14)-10(-6) mol/l) were weaker in NOX2(-/-) compared with wild types. N(omega)-nitro-l-arginine methyl ester (l-NAME; 10(-4) mol/l) treatment reduced basal diameters significantly more in NOX2(-/-) (-18%) than in wild types (-6%) and augmented ANG II responses. Adenosine (10(-11)-10(-4) mol/l) constricted arterioles of wild types but not of NOX2(-/-). However, simultaneous inhibition of adenosine type-2 receptors induced vasoconstriction, which was stronger in NOX2(-/-). Adenosine (10(-8) mol/l) enhanced the ANG II response in wild type, but not in NOX2(-/-). This sensitizing effect by adenosine was abolished by apocynin. Chronic ANG II pretreatment (14 days) did not change the ANG II responses in NOX2(-/-), but strengthened the response in wild types. ANG II pretreatment augmented the l-NAME response in NOX2(-/-) (-33%), but not in wild types. Simultaneous application of l-NAME and ANG II caused a stronger constriction in the NOX2(-/-) (-64%) than in wild types (-46%). Basal blood pressures were similar in both genotypes, however, chronic ANG II infusion elevated blood pressure to a greater extent in wild-type (15 +/- 1%) than in NOX2(-/-) (8 +/- 1%) mice. In conclusion, NOX2 plays an important role in the control of afferent arteriole tone and is involved in the contractile responses to ANG II and/or adenosine. NOX2 can be activated by elevated ANG II and may play an important role in ANG II-induced hypertension. NOX2-derived ROS scavenges nitric oxide, causing subsequent nitric oxide-deficiency.  相似文献   

10.
The effects of adenosinergic and angiotensin IIergic agents and of their combinations on the seizure threshold in mice were determined by measuring the dose of timed-intravenous (tail vein) infused pentylenetetrazol (PTZ) required to elicit clonic seizures. All drugs were administered intracerebroventricularly (i.c.v.). Angiotensin II (ANG II), its peptide analogue sarmesin, the selective adenosine A1 receptor agonists N6-cyclopentyladenosine (CPA) and 2-chloroadenosine (2-ClAdo) significantly increased the PTZ seizure threshold. The selective AT1 receptor antagonist losartan blocked the anticonvulsant effect of ANG II, sarmesin and CPA. The selective AT2 receptor antagonist PD 123319 failed to block the effect of ANG II and sarmesin on the PTZ seizure threshold but reversed the threshold-increasing effect of CPA. The selective adenosine A1 receptor antagonist 8-(p-sulfophenyl)-theophylline (8-p-SPT) alleviated the threshold-increasing effect of CPA and ANG II. Concurrent injection of 2-ClAdo and ANG II as well as of 2-ClAdo and sarmesin, at doses which had no significant effect on the PTZ seizure threshold when given alone, acted synergistically, producing greater effect on the threshold. Taken together, the findings support the possibility of specific ANG II-adenosine A1 receptor interactions in the regulation of the PTZ seizure threshold.  相似文献   

11.
We tested the hypothesis that nitric oxide (NO) inhibits endothelium-derived hyperpolarizing factor (EDHF)-induced vasodilation via a negative feedback pathway in the coronary microcirculation. Coronary microvascular diameters were measured using stroboscopic fluorescence microangiography. Bradykinin (BK)-induced dilation was mediated by EDHF, when NO and prostaglandin syntheses were inhibited, or by NO when EDHF and prostaglandin syntheses were blocked. Specifically, BK (20, 50, and 100 ng. kg(-1). min(-1) ic) caused dose-dependent vasodilation similarly before and after administration of N(G)-monomethyl-L-arginine (L-NMMA) (3 micromol/min ic for 10 min) and indomethacin (Indo, 10 mg/kg iv). The residual dilation to BK with L-NMMA and Indo was completely abolished by suffusion of miconazole or an isosmotic buffer containing high KCl (60 mM), suggesting that this arteriolar vasodilation is mediated by the cytochrome P-450 derivative EDHF. BK-induced dilation was reduced by 39% after inhibition of EDHF and prostaglandin synthesis, and dilation was further inhibited by combined blockade with L-NMMA to a 74% reduction in the response. This suggests an involvement for NO in the vasodilation. After dilation to BK was assessed with L-NMMA and Indo, sodium nitroprusside (SNP, 1-3 microgram. kg(-1). min(-1) ic), an exogenous NO donor, was administered in a dose to increase the diameter to the original control value. Dilation to BK was virtually abolished when administered concomitantly with SNP during L-NMMA and Indo (P < 0.01 vs. before SNP), suggesting that NO inhibits EDHF-induced dilation. SNP did not affect adenosine- or papaverine-induced arteriolar dilation in the presence of L-NMMA and Indo, demonstrating that the effect of SNP was not nonspecific. In conclusion, our data are the first in vivo evidence to suggest that NO inhibits the production and/or action of EDHF in the coronary microcirculation.  相似文献   

12.
The role of P1 receptors and P2Y1 receptors in coronary vasodilator responses to adenine nucleotides was examined in the isolated guinea pig heart. Bolus arterial injections of nucleotides were made in hearts perfused at constant pressure. Peak increase in flow was measured before and after addition of purinoceptor antagonists. Both the P1 receptor antagonist 8-(p-sulfophenyl)theophylline and adenosine deaminase inhibited adenosine vasodilation. AMP-induced vasodilation was inhibited by P1 receptor blockade but not by adenosine deaminase or by the selective P2Y1 antagonist N6-methyl-2'-deoxyadenosine 3',5'-bisphosphate (MRS 2179). ADP-induced vasodilation was moderately inhibited by P1 receptor blockade and greatly inhibited by combined P1 and P2Y1 blockade. ATP-induced vasodilation was antagonized by P1 blockade but not by adenosine deaminase. Addition of P2Y1 blockade to P1 blockade shifted the ATP dose-response curve further rightward. It is concluded that in this preparation ATP-induced vasodilation results primarily from AMP stimulation of P1 receptors, with a smaller component from ATP or ADP acting on P2Y1 receptors. ADP-induced vasodilation is largely due to P2Y1 receptors, with a smaller contribution by AMP or adenosine acting via P1 receptors. AMP responses are mediated solely by P1 receptors. Adenosine contributes very little to vasodilation resulting from bolus intracoronary injections of ATP, ADP, or AMP.  相似文献   

13.
Flow-induced vasodilation is attenuated with old age in rat skeletal muscle arterioles. The purpose of this study was to determine whether diminished cyclooxygenase (COX) signaling contributes to the age-induced attenuation of flow-induced vasodilation in gastrocnemius muscle arterioles and to determine whether, and through which mechanism(s), exercise training restores this deficit in old rats. Fischer 344 rats (3 and 22 mo old) were assigned to a sedentary or exercise-trained group. First-order arterioles were isolated from the gastrocnemius muscles, cannulated, and pressurized to 70 cm H(2)O. Diameter changes were determined in response to graded increases in intraluminal flow in the presence and absence of nitric oxide synthase (NOS) inhibition [10(-5) M N(G)-nitro-L-arginine methyl ester (L-NAME)], COX inhibition (10(-5) M indomethacin), or combination NOS (10(-5) M L-NAME) plus COX (10(-5) M indomethacin) inhibition. Aging reduced flow-induced vasodilation in gastrocnemius muscle arterioles. Exercise training restored responsiveness to flow in arterioles of aged rats and enhanced flow-induced vasodilation in arterioles from young rats. L-NAME inhibition of flow-induced vasodilation was greater in arterioles from old rats compared with those from young rats and was increased after exercise training in arterioles from both young and old rats. Although the indomethacin-sensitive portion of flow-induced dilation was not altered by age or training, both COX-1 mRNA expression and PGI(2) production increased with training in arterioles from old rats. These data demonstrate that exercise training restores flow-induced vasodilation in gastrocnemius muscle arterioles from old rats and enhances flow-induced vasodilation in gastrocnemius muscle arterioles from young rats. In arterioles from both old and young rats, the exercise training-induced enhancement of flow-induced dilation occurs primarily through a NOS mechanism.  相似文献   

14.
Local cutaneous heating produces vasodilation that is largely nitric oxide (NO) dependent. We showed that angiotensin II (ANG II) attenuates this by an ANG II receptor, type 1 (AT1R)-dependent mechanism that is reversible with the antioxidant ascorbate, indicating oxidative stress. Reactive oxygen species (ROS) produced by ANG II employ NADPH and xanthine oxidase pathways. To determine whether these mechanisms pertain to skin, we measured cutaneous local heating with 10 μM ANG II, using apocynin to inhibit NADPH oxidase and allopurinol to inhibit xanthine oxidase. We also inhibited superoxide with tempol, and H(2)O(2) with ebselen. We heated the skin of the calf in 8 healthy volunteers (24.5-29.9 yr old) to 42°C and measured local blood flow to assess the percentage of maximum cutaneous vascular conductance. We remeasured while perfusing allopurinol, apocynin, ebselen, and tempol through individual microdialysis catheters. This was then repeated with ANG II combined with antioxidant drugs. tempol and apocynin alone had no effect on the heat response. Allopurinol enhanced the entire response (125% of heat alone), while ebselen suppressed the heat plateau (76% of heat alone). ANG II alone caused significant attenuation of the entire heat response (52%). When added to ANG II, Allopurinol partially reversed the ANG II attenuation. Heat with ebselen and ANG II were similar to heat and ANG II; ebselen only partially reversed the ANG II attenuation. Apocynin and tempol each partially reversed the attenuation caused by ANG II. This suggests that ROS, produced by ANG II via NADPH and xanthine oxidase pathways, modulates the response of skin to the application of heat, and thus contributes to the control of local cutaneous blood flow.  相似文献   

15.
The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 microg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng x kg(-1) x min(-1) for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT(2)) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT(1)) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT(2) blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 microg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow (P < 0.03), which were potentiated in the presence of the AT(2) antagonist (P < 0.02). Addition of the AT(1) antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure (P < 0.01). Significant uterine vasodilation (P < 0.01) was noted with AT(1) blockade in the second experiment, which was reversed by administration of the AT(2) antagonist or by the nitric oxide synthetase inhibitor N(omega)-nitro-L-arginine methyl ester. We conclude that the AT(1)-receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT(2)-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT(2)-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.  相似文献   

16.
17.
ANG II plays a major role in renal water and sodium regulation. In the immortalized mouse renal collecting duct principal cells (mpkCCD(cl4)) cell line, we treated cells with ANG II and examined aquaporin-2 (AQP2) protein expression, trafficking, and mRNA levels, by immunoblotting, immunofluorescence, and RT-PCR. After 24-h incubation, ANG II-induced AQP2 protein expression was observed at the concentration of 10(-10) M and increased in a dose-dependent manner. ANG II (10(-7) M) increased AQP2 protein expression and mRNA levels at 0.5, 1, 2, 6, and 24 h. Immunofluorescence studies showed that ANG II increased the apical membrane targeting of AQP2 from 30 min to 6 h. Next, the signaling pathways underlying the ANG II-induced AQP2 expression were investigated. The PKC inhibitor Ro 31-8220 (5 × 10(-6) M) and the PKA inhibitor H89 (10(-5) M) blocked ANG II-induced AQP2 expression, respectively. Calmodulin inhibitor W-7 markedly reduced ANG II- and/or dDAVP-stimulated AQP2 expression. ANG II (10(-9) M) and/or dDAVP (10(-10) M) stimulated AQP2 protein levels and cAMP accumulation, which was completely blocked by pretreatment with the vasopressin V2 receptor (V2R) antagonist SR121463B (10(-8) M). Pretreatment with the angiotensin AT(1) receptor (AT1R) antagonist losartan (3 × 10(-6) M) blocked ANG II (10(-9) M)-stimulated AQP2 protein expression and cAMP accumulation, and partially blocked dDAVP (10(-10) M)- and dDAVP+ANG II-induced AQP2 protein expression and cAMP accumulation. In conclusion, ANG II regulates AQP2 protein, trafficking, and gene expression in renal collecting duct principal cells. ANG II-induced AQP2 expression involves cAMP, PKC, PKA, and calmodulin signaling pathways via V2 and AT(1) receptors.  相似文献   

18.
Iida H  Iida M  Takenaka M  Fujiwara H  Dohi S 《Life sciences》2006,78(12):1310-1316
Our aim was to test for smoking-induced endothelial dysfunction in rat cerebral vessels, then to evaluate the effect of valsartan [angiotensin II type I (AT1)-receptor blocker] on that impairment. In pentobarbital-anesthetized, mechanically ventilated Sprague-Dawley rats, we used a cranial window preparation to measure changes in pial vessel diameters following topical applications of acetylcholine (Ach) (before and after smoking or intravenous nicotine infusion; n = 6 in each group), and adenosine (n = 6 for before and after smoking). Then, after intravenous valsartan pretreatment we reexamined the pial vasodilator response to topical Ach (before and after cigarette smoking). Under control conditions, cerebral arterioles were dilated by 6.9 +/- 4.2% and 13.6 +/- 4.8% by topical Ach (10(-6) M and 10(-5) M, respectively) and by 6.4 +/- 2.5% and 12.2 +/- 3.1% by topical adenosine (10(-5) M and 10(-4) M, respectively). One hour after a 1-min inhalation of mainstream smoke (1-mg nicotine cigarette), 10(-5) M Ach constricted cerebral arterioles (-4.4 +/- 4.1%), while 10(-4) M adenosine dilated them by 13.4 +/- 3.4%. One hour after a 1-min nicotine infusion (0.05 mg), 10(-5) M Ach dilated cerebral arterioles by 9.9 +/- 2.4%. Thus, vasodilator response to topical Ach was impaired after smoking, whereas that to adenosine was unaffected. However, the vasodilator response to Ach was unaffected by intravenous nicotine. Valsartan prevented smoking from impairing Ach-induced vasodilation. In conclusion, acute single-cigarette smoking causes a dysfunction of endothelium-dependent, but not endothelium-independent, vasodilation of rat cerebral vessels in vivo, and the effect was not mimicked by intravenous nicotine. AT1-receptor blockade prevented the above smoking-induced impairment of endothelium-dependent vasodilation.  相似文献   

19.
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We determined signaling mechanisms by which ANG II increases endothelial arginase function. Results show that ANG II (0.1 μM, 24 h) elevates arginase activity and arginase I expression in bovine aortic endothelial cells (BAECs) and decreases NO production. These effects are prevented by the arginase inhibitor BEC (100 μM). Blockade of ANG II AT(1) receptors or transfection with small interfering RNA (siRNA) for Gα12 and Gα13 also prevents ANG II-induced elevation of arginase activity, but siRNA for Gαq does not. ANG II also elevates active RhoA levels and induces phosphorylation of p38 MAPK. Inhibitors of RhoA activation (simvastatin, 0.1 μM) or Rho kinase (ROCK) (Y-27632, 10 μM; H1152, 0.5 μM) block both ANG II-induced elevation of arginase activity and phosphorylation of p38 MAPK. Furthermore, pretreatment of BAECs with p38 inhibitor SB-202190 (2 μM) or transfection with p38 MAPK siRNA prevents ANG II-induced increased arginase activity/expression and maintains NO production. Additionally, inhibitors of p38 MAPK (SB-203580, 5 μg·kg(-1)·day(-1)) or arginase (ABH, 8 mg·kg(-1)·day(-1)) or arginase gene knockout in mice prevents ANG II-induced vascular endothelial dysfunction and associated enhancement of arginase. These results indicate that ANG II increases endothelial arginase activity/expression through Gα12/13 G proteins coupled to AT(1) receptors and subsequent activation of RhoA/ROCK/p38 MAPK pathways leading to endothelial dysfunction.  相似文献   

20.
We tested the hypothesis that constriction of descending vasa recta (DVR) is mediated by voltage-gated calcium entry. K(+) channel blockade with BaCl(2) (1 mM) or TEACl (30 mM) depolarized DVR smooth muscle/pericytes and constricted in vitro-perfused vessels. Pericyte depolarization by 100 mM extracellular KCl constricted DVR and increased pericyte intracellular Ca(2+) ([Ca(2+)](i)). The K(ATP) channel opener pinacidil (10(-7)-10(-4) M) hyperpolarized resting pericytes, repolarized pericytes previously depolarized by ANG II (10(-8) M), and vasodilated DVR. The DVR vasodilator bradykinin (10(-7) M) also reversed ANG II depolarization. The L-type Ca(2+) channel blocker diltiazem vasodilated ANG II (10(-8) M)- or KCl (100 mM)-preconstricted DVR, and the L-type agonist BayK 8644 constricted DVR. The plateau phase of the pericyte [Ca(2+)](i) response to ANG II was inhibited by diltiazem. These data support the conclusion that DVR vasoreactivity is controlled through variation of membrane potential and voltage-gated Ca(2+) entry into the pericyte cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号