首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invertebrate herbivore outbreaks have important impacts on system biogeochemical cycling, but these effects have been poorly documented in African savanna ecosystems. In semi‐arid African savannas, outbreaks of the lepidopteran Imbrasia belina (mopane worm) affect discrete patches of the dominant Colophospermum mopane trees; larvae may completely defoliate trees for up to six weeks during each of the early and late growing seasons. We studied the impact of mopane worm outbreaks on the availability of nitrogen (N), phosphorus (P), and potassium (K) within mopane savanna by quantifying major nutrient pools in defoliated and non‐defoliated savanna patches, including leaves, leaf litter, worm frass, and the soil beneath trees. Within an outbreak area, approximately 44 percent of trees were infested, supporting ~29,000 worms/ha, leading to ~640 kg/ha dry weight frass deposition at 1.4 g of frass/day‐individual (fourth or fifth instar), compared with an average 1645 kg/ha dry weight of leaf on trees most of which should be deposited by litterfall at the end of the growing season. Frass had twofold higher P, 10 percent higher K, but equivalent N content than litter. Taking frass and litter deposition together, the N, P, and K contents added due to the outbreak event at our study site were 0.88, 5.8, and 2.8 times those measured in non‐outbreak patches, a pattern which was reflected in the nutrient contents of soil surfaces beneath defoliated trees. Invertebrate herbivory appears to be an important driver for mopane savanna but has been largely neglected.  相似文献   

2.
Absence of fire is increasingly recognized as an important driver of soil nutrient budgets in Eucalyptus forest, especially in forests affected by premature Eucalyptus decline, due to the effects of soil nutrient accumulation on nutrient balances and forest community dynamics. In this study, we present a dataset of soil and foliar nutrient analyses, and vegetation measurements from a fire chronosequence survey in native E. delegatensis forest. Measured indices include total soil and extractable soil nitrogen (N), or phosphorus (P), soil organic carbon (C), soil acid‐phosphatase (PME) activity, foliar N and foliar P, and understorey and overstorey vegetation canopy height. We show that in some cases indices are strongly linked to time since fire (2–46 years). Time since fire correlated positively with foliar N, total and extractable soil N, soil organic C, and also soil PME activity; the latter an indicator of biotic P demand. Differences in the strength of these relationships were apparent between two geology types, with stronger relationships on the potentially less‐fertile geology. The strong positive correlation with time since fire and understorey canopy height reflected increasing shrub biomass and thickening of the shrub layer. The strong positive correlation for soil or foliar N, but not P, with time since fire, indicates that P does not increase relative to N over time. P may, therefore, become limiting to growth in this plant community. Similarly, the significantly higher concentrations of soil N but not P, also found in both older and long‐unburnt forest stands (>100 years since management), may exacerbate a situation of soil nutrient limitation over several decades. A characteristic feature of long unmanaged stands is a developing tea tree (Leptospermum sp.) understorey, which may benefit from elevated soil N availability and increasing organic C accumulation with prolonged fire absence. This increased shrub biomass would outcompete Eucalyptus for resources, including soil nutrients and water.  相似文献   

3.
The mode of dispersal of the diaspores of Colophospermum mopane has always been ascribed to epizoochory due the slightly sticky nature of mopane diaspores. The stickiness results from the plentiful supply of resinous compounds in developing structures on a mopane plant. Epizoochory as the mode of dispersal for both seeds which had the pod removed and diaspores of C. mopane is disproved, and experimentation shows the most likely agents of dispersal of mopane diaspores to be water and wind.  相似文献   

4.
Mopane veld is of great value to the general ungulate spectrum in times of drought, and it is capable of retaining its dominance in a community even in the presence of extremely heavy browsing pressure imposed by large browsing mammals. Scrub mopane (hedges) has been regarded as resulting from excessive browsing pressure by large mammals, especially elephants. Both the nutrient and chemical composition of mopane twig bark were investigated, the seasonal results being related back to the seasonal utilization of branches by large mammals. Mopane twigs were most palatable in winter. Eland feed on mopane throughout the year irrespective of palatability. Elephants were rarely present in the scrub mopane area before the onset of spring rains, when the major mopane leaf flush occurs independently of rainfall. The impact of both species was not excessive and recruitment of mopane seedlings does occur. Herbivore browsing is responsible for a mopane morph which buds early and continues to produce accessible, nutritious leaves even when heavily browsed. Many browsing ungulates are reliant on this resource during the stressful transition from spring to summer in south-eastern Botswana.  相似文献   

5.
The objective of this study was to investigate the influence of mopane canopy cover on litter decomposition in a semi‐arid African savannah. We used a randomized block design with five blocks of 100 × 100 m demarcated in a 10‐ha pocket of open mopane woodland. Litterbags were placed beneath large (8.3 m crown diameter) and small mopane trees (2.7 m crown diameter) and in the intercanopy area. Decomposition was fastest in the intercanopy area exposed to solar radiation (k = 0.35 year?1), intermediate beneath small trees (k = 0.28 year?1) and slowest beneath large trees (k = 0.23 year?1). Soil temperatures beneath small and large trees were 3–5 and 6–9°C lower than in the intercanopy area, respectively. Bacterial and fungal counts were significantly higher (P < 0.05) beneath large than small trees and in the intercanopy area. The amount of N and P released did not vary significantly among sampling sites. Soil moisture in the dry season was similar among sampling sites but rainy‐season soil moisture was significantly greater (P < 0.05) beneath large than small trees and in the intecanopy area. Mopane canopy cover retarded litter decomposition suggesting that photodegradation could be an important factor controlling carbon turnover in semi‐arid African savannahs.  相似文献   

6.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

7.
Despite the nutritional value of Colophospermum mopane to browser's diets, there is still insufficient knowledge on the effect of browsers on concentrations of these trace elements. A field experiment was conducted in Musina Nature Reserve, Limpopo Province, South Africa, to determine the effect of pruning on the concentration of trace elements in mopane leaves. Samples were analysed for iron (Fe), manganese (Mn), boron (B), molybdenum (Mo), copper (Cu), zinc (Zn), cobalt (Co), fluoride (F) and selenium (Se) using the inductively coupled plasma atomic emission spectrometry technique. The effect of pruning was tested using the two‐tailed t‐test: two‐sample assuming equal variance and two‐tailed Mann–Whitney U‐test. Results showed that the concentration of trace elements in the control and pruned trees varies slightly through the year. Fe, Mn, Mo, Cu, Zn and Se are higher during leaf flush, but declined as the leaves matured and aged. This study concluded that simulated browsing had no significant effect on the concentration of trace elements in the mopane leaves. Seasonal variation in the amount of trace elements has implications on the distribution of browsers in the mopane woodland.  相似文献   

8.
Canadell  J.  Vilá  M. 《Plant Ecology》1992,(1):273-282
In order to study the variability in nutrient concentrations in four tissues of Q. ilex in relation to soil properties, we selected fifteen stands in both Quercus ilex forests and Q. ilex-Pinus halepensis mixed forests. These stands had developed on soils derived from eight different parent materials. Three soil groups were differentiated according to their chemical properties: calcareous soils, siliceous soils, and volcanic soils. Across sites, nutrient concentrations were generally less variable in current-year tissues than in older tissues. Nitrogen and potassium showed the lowest variability among sites, their concentrations in current-year leaves ranging from 1.17% to 1.39% for N and from 0.53% to 0.68% for K. There were few statistically significant correlations between tissue element concentrations, the most frequent being the antagonistic relationship between calcium and magnesium. Nitrogen concentration in current-year leaves was negatively correlated with soil chemical fertility (nitrogen, phosphorus and potassium). This may reflect a nutritional imbalance between nitrogen and other nutrients, some of which may be more limiting than nitrogen to Q. ilex growth in Catalonia forests. Negative correlations were also found between plant magnesium and soil calcium, and positive correlations between plant calcium and soil calcium.  相似文献   

9.
Aims The mature meadows (MMs) and the swamp meadows (SMs) are the two most important ecosystems in the eastern Tibetan Plateau, China. Besides their substantial differences in terms of soil water conditions and thereby the soil oxygen and nutrients, however, little is known about the differences in community composition, structure, traits and productivity between these two meadows. We particularly ask whether light availability mediated by physical structure heterogeneity is a key determinant of the difference in community composition and productivity between these two meadows.Methods We examined the community structure, composition, aboveground net primary productivity (ANPP), light availability in understory and the community-weighted means (CWMs) for leaf morphological and physiological traits in 12 random plots (5 m × 5 m) for each of the studied habitats.Important findings The results showed that plant community in the MM had higher variation in both vertical and horizontal structure and thus had more light availability in the understory. The MM had higher species richness and greater ANPP than the SM. The CWMs of leaf morphological and physiological traits for species in the MM featured a fast-growing strategy (i.e. higher height, leaf area and net photosynthesis rate and lower nitrogen:phosphorus ratio), in contrast to those in the SM. We also found that there were significant correlations between the CWM of traits and the ANPP, indicating that some key traits in these habitats have linked to community productivity. Our study also suggests that the heterogeneity in the community structure, which affects light availability in the understory, may play an important role in determining the community composition and productivity. In conclusion, our study revealed significant differences in community structure, composition and traits between the MM and the SM, and the light availability that related closely to community structure is the key factor to determine the composition and productivity of the community of these two habitats.  相似文献   

10.
Northern permafrost soils contain important carbon stocks. Here we report the long-term response of carbon stocks in high Arctic dwarf shrub tundra to short-term, low-level nutrient enrichment. Twenty years after experimental nitrogen addition, carbon stocks in vegetation and organic soil had almost halved. In contrast, where phosphorus was added with nitrogen, carbon storage increased by more than 50%. These responses were explained by changes in the depths of the moss and organic soil layers. Nitrogen apparently stimulated decomposition, reducing carbon stocks, whilst phosphorus and nitrogen co-stimulated moss productivity, increasing organic matter accumulation. The altered structure of moss and soil layers changed soil thermal regimes, which may further influence decomposition of soil carbon. If climate warming increases phosphorus availability, any increases in nitrogen enrichment from soil warming or expanding human activity in the Arctic may result in increased carbon sequestration. Where phosphorus is limiting in tundra areas, however, nitrogen enrichment may result in carbon loss.  相似文献   

11.
Understanding covariance of plant genetics and soil processes may improve our understanding the role of plant genetics in structuring soils and ecosystem function across landscapes. We measured soil nitrogen (N) and phosphorus (P) availability using ion exchange resin bags within three river drainages across Utah and Arizona, USA. The three drainages spanned more than 1,000 km in distance, 8° of latitude, and varying climatic regimes, but were similarly dominated by stands of Populus fremontii (S. Watts), P. angustifolia (James), or natural hybrids between the two species. Soil N availability was consistently greater in P. fremontii stands compared to P. angustifolia stands, and hybrid stands were intermediate. However, we found that the influence of overstory type on soil P availability depended on the river drainage. Our study suggests that, even with a near doubling of mean soil N availability across these drainages, the relative genetic-based effects of the dominant plant on N availability remained consistent. These results expand upon previous work by: 1) providing evidence for linkages between plant genetic factors and ecosystem function across geographic scales; and 2) indicating that plant genetic-based effects on nutrient dynamics in a given ecosystem may differ among nutrients (e.g., N vs. P).  相似文献   

12.
Semiarid sagebrush ecosystems are being transformed by wildfire, rangeland improvement techniques, and exotic plant invasions, but the effects on ecosystem C and N dynamics are poorly understood. We compared ecosystem C and N pools to 1 m depth among historically grazed Wyoming big sagebrush, introduced perennial crested wheatgrass, and invasive annual cheatgrass communities, to examine whether the quantity and quality of plant inputs to soil differs among vegetation types. Natural abundance δ15N isotope ratios were used to examine differences in ecosystem N balance. Sagebrush-dominated sites had greater C and N storage in plant biomass compared to perennial or annual grass systems, but this was predominantly due to woody biomass accumulation. Plant C and N inputs to soil were greatest for cheatgrass compared to sagebrush and crested wheatgrass systems, largely because of slower root turnover in perennial plants. The organic matter quality of roots and leaf litter (as C:N ratios) was similar among vegetation types, but lignin:N ratios were greater for sagebrush than grasses. While cheatgrass invasion has been predicted to result in net C loss and ecosystem degradation, we observed that surface soil organic C and N pools were greater in cheatgrass and crested wheatgrass than sagebrush-dominated sites. Greater biomass turnover in cheatgrass and crested wheatgrass versus sagebrush stands may result in faster rates of soil C and N cycling, with redistribution of actively cycled N towards the soil surface. Plant biomass and surface soil δ15N ratios were enriched in cheatgrass and crested wheatgrass relative to sagebrush-dominated sites. Source pools of plant available N could become 15N enriched if faster soil N cycling rates lead to greater N trace gas losses. In the absence of wildfire, if cheatgrass invasion does lead to degradation of ecosystem function, this may be due to faster nutrient cycling and greater nutrient losses, rather than reduced organic matter inputs.  相似文献   

13.
Du YX  Pan GX  Li LQ  Hu ZL  Wang XZ 《应用生态学报》2010,21(8):1926-1932
为了解喀斯特生态系统退化过程中树木细根生物量和土壤养分的变化,选择贵州中部喀斯特山地乔木林、灌木林和灌草丛3种植被生态系统,比较分析不同深度(0~5 cm、5~10 cm和10~15 cm)土壤细根数量及其养分情况.结果表明:树木细根主要分布在0~10 cm土层,并随土层加深而减少.在0~10 cm土层中,乔木林、灌木林和灌草丛的活细根生物量分别占0~15 cm总细根生物量的42.78%、56.75%和53.38%,总活细根生物量的83.36%、86.91%和93.79%.不同植被下优势种植物细根生物量存在差异.0~5 cm土层乔木林活细根氮素和磷素储量均显著高于灌草丛和灌木林(P0.05),但灌木林和灌草丛间没有差异;5~10 cm土层乔木林活细根氮和磷储量显著高于灌草丛和灌木林(P0.05),灌木林下又显著高于灌草丛下(P0.05).0~10 cm土层的活细根生物量与植株地上部分生物量呈正相关,植物叶片氮、磷养分含量与细根比根长呈显著的负相关,说明细根的养分储量对地上生物量的建成和生态系统功能的发挥具有重要作用.  相似文献   

14.
1. Mass losses and nutrient losses from fresh roadside cuttings were studied in the field during a 6-week period. Large amounts (over 50%) appear to be lost from the cuttings. The losses were positively related to initial nutrient concentrations during this short-term study. Mass and nitrogen losses were best explained by the initial C:N ratio, phosphorus and potassium losses by the initial phosphorus concentration.
2. For potassium the losses were particularly large (up to 90%). For this element only, the observed relationship between loss rate and initial chemical composition could not be established significantly. It is concluded that potassium is mainly lost by leaching whereas the major nitrogen, phosphorus and mass losses are most probably caused by rapid microbial decomposition of readily soluble substances.
3. Using existing data on chemical composition of other roadside cuttings, nutrient losses after different hay removal delay times were modelled for different plant communities. All or most of the losses were assumed to return to the soil system.
4. When soil impoverishment is aimed for, cuttings should be removed within 1 or 2 weeks in most plant communities. If removal is delayed longer, the amounts of nutrients removed will often fall below the annual atmospheric input. In plant communities where annual above-ground production of nitrogen and phosphorus are lower than the annual atmospheric deposition already, rapid removal of the cuttings may be the only way to maintain at least potassium at a limiting level.
5. The main effect of hay-making on the soil nutrient status most likely consists of a reduction of the potassium availability, at least on sandy soils with a low cation exchange capacity and provided there is little delay in hay removal.  相似文献   

15.
To understand the importance of plants in structuring the vertical distributions of soil nutrients, we explored nutrient distributions in the top meter of soil for more than 10,000 profiles across a range of ecological conditions. Hypothesizing that vertical nutrient distributions are dominated by plant cycling relative to leaching, weathering dissolution, and atmospheric deposition, we examined three predictions: (1) that the nutrients that are most limiting for plants would have the shallowest average distributions across ecosystems, (2) that the vertical distribution of a limiting nutrient would be shallower as the nutrient became more scarce, and (3) that along a gradient of soil types with increasing weathering-leaching intensity, limiting nutrients would be relatively more abundant due to preferential cycling by plants. Globally, the ranking of vertical distributions among nutrients was shallowest to deepest in the following order: P > K > Ca > Mg > Na = Cl = SO4. Nutrients strongly cycled by plants, such as P and K, were more concentrated in the topsoil (upper 20 cm) than were nutrients usually less limiting for plants such as Na and Cl. The topsoil concentrations of all nutrients except Na were higher in the soil profiles where the elements were more scarce. Along a gradient of weathering-leaching intensity (Aridisols to Mollisols to Ultisols), total base saturation decreased but the relative contribution of exchangeable K+ to base saturation increased. These patterns are difficult to explain without considering the upward transport of nutrients by plant uptake and cycling. Shallower distributions for P and K, together with negative associations between abundance and topsoil accumulation, support the idea that plant cycling exerts a dominant control on the vertical distribution of the most limiting elements for plants (those required in high amounts in relation to soil supply). Plant characteristics like tissue stoichiometry, biomass cycling rates, above- and belowground allocation, root distributions, and maximum rooting depth may all play an important role in shaping nutrient profiles. Such vertical patterns yield insight into the patterns and processes of nutrient cycling through time.  相似文献   

16.
The role of secondary vegetation in restoring soil fertility during shifting cultivation in the tropics is well known. Yet the effect of secondary succession on the spatial patterns of soil properties has received little attention. To determine whether changes in the plant community as a result of shifting cultivation affect the scale of spatial dependence for biologically important soil nutrients, we sampled three dry tropical forest stands in Campeche, Mexico. These stands represented a gradient of cultivation history: one mature forest stand, a forest fallow that had undergone one cultivation-fallow cycle, and a forest fallow that had undergone two cultivation-fallow cycles. We used an analysis of semivariance to quantify the scale and magnitude of spatial dependence for organic matter content (OM), phosphorus (P), potassium (K), and aluminum (Al) in each stand. The scale of spatial dependence varied with cultivation history, but the degree of spatial dependence did not differ among stands. In the mature forest P and K were autocorrelated over distances >7.5 m. In the forest fallows 48–88% of the variation in soil P and K was autocorrelated over distances up to 1.1–5.1 m. In contrast, the range of autocorrelation for Al (∼2.5 m) did not differ among stands. We conclude that shifting cultivation changes the range of autocorrelation for biologically important soil nutrients at a scale that may influence plant growth. The finer scaled pattern of soil nutrients in forest fallows is likely to persist with continued shifting cultivation, since fallows are cleared every 3–15 years.  相似文献   

17.
The establishment and subsequent impacts of invasive plant species often involve interactions or feedbacks with the below-ground subsystem. We compared the performance of planted tree seedlings and soil communities in three ectomycorrhizal tree species at Craigieburn, Canterbury, New Zealand – two invasive species (Pseudotsuga menziesii, Douglas-fir; Pinus contorta, lodgepole pine) and one native (Nothofagus solandri var. cliffortioides, mountain beech) – in monodominant stands. We studied mechanisms likely to affect growth and survival, i.e. nutrient competition, facilitation of carbon and nutrient transfer through mycorrhizal networks, and modification of light and soil conditions by canopy trees. Seedlings were planted in plastic tubes filled with local soil, and placed in monospecific stands. Effects of root competition from trees and mycorrhizal connections on seedling performance were tested by root trenching and use of tubes with or without a fine mesh (20 μm), allowing mycorrhizal hyphae (but not roots) to pass through. Survival and growth were highest in stands of Nothofagus and lowest under Pseudotsuga. Surprisingly, root trenching and mesh treatments had no effect on seedling performance, indicating canopy tree species affected seedling performance through reduced light availability and altered soil conditions rather than below-ground suppression from root competition or mycorrhizal facilitation. Seedlings in Pseudotsuga stands had lower mycorrhizal colonisation, likely as a result of the lower light levels. Soil organic matter levels, microbial biomass, and abundance and diversity of microbe-consuming nematodes were all highest under Nothofagus, and nematode community assemblages differed strongly between native and non-native stand types. The negative effects of non-native trees on nematodes relative to Nothofagus are likely due to the lower availability of soil organic matter and microbial biomass in these stands, and therefore lower availability of resources for nematodes. This study shows that established stands of non-native invasive tree species may adversely affect tree seedlings and soil communities through modifications of the microenvironment both above and below ground. As such, invasion and domination of new landscapes by these species is likely to result in fundamental shifts in community- and ecosystem-level properties relative to those under native forest cover.  相似文献   

18.
1. Elucidation of the mechanism determining the spatial scale of patch selection by herbivores has been complicated by the way in which resource availability at a specific scale is measured and by vigilance behaviour of the herbivores themselves. To reduce these complications, we studied patch selection by an animal with negligible predation risk, the African elephant. 2. We introduce the concept of nutrient load as the product of patch size, number of patches and local patch nutrient concentration. Nutrient load provides a novel spatially explicit expression of the total available nutrients a herbivore can select from. 3. We hypothesized that elephant would select nutrient-rich patches, based on the nutrient load per 2500 m(2) down to the individual plant scale, and that this selection will depend on the nitrogen and phosphorous contents of plants. 4. We predicted that elephant would cause more adverse impact to trees of lower value to them in order to reach plant parts with higher nutrient concentrations such as bark and root. However, elephant should maintain nutrient-rich trees by inducing coppicing of trees through re-utilization of leaves. 5. Elephant patch selection was measured in a homogenous tree species stand by manipulating the spatial distribution of soil nutrients in a large field experiment using NPK fertilizer. 6. Elephant were able to select nutrient-rich patches and utilized Colophospermum mopane trees inside these patches more than outside, at scales ranging from 2500 down to 100 m(2) . 7. Although both nitrogen and phosphorus contents of leaves from C. mopane trees were higher in fertilized and selected patches, patch choice correlated most strongly with nitrogen content. As predicted, stripping of leaves occurred more in nutrient-rich patches, while adverse impact such as uprooting of trees occurred more in nutrient-poor areas. 8. Our results emphasize the necessity of including scale-dependent selectivity in foraging studies and how elephant foraging behaviour can be used as indicators of change in the availability of nutrients.  相似文献   

19.
磷素是植物生长不可缺少的营养元素,而有机磷是土壤磷库的重要组成部分,其活性大小与土壤供磷能力密切相关。采用野外调查与室内分析相结合的方法,以广西凭祥杉木纯林、杉木-火力楠混交林、杉木-米老排混交林为研究对象,探讨了不同杉木林分类型土壤团聚体中有机磷组分的分布特征,结果表明:除高稳性有机磷主要分布在大粒径团聚体中外,其余组分有机磷含量均表现为随着粒径减小而增加,其中<0.25mm粒径团聚体的有机磷含量最高,而受粒径分布影响,<2mm粒径团聚体的有机磷储量最高;<0.25mm、>2mm粒径团聚体和土壤团聚体稳定指标与各有机磷组分储量呈极显著正相关,在保持土壤稳定的基础上,可通过提高>2mm和<0.25mm粒径团聚体的占比能有效增加土壤有机磷储量;在3种林分类型中,杉木-火力楠混交林能够有效的提高土壤团聚体稳定性,提高土壤有机磷含储量。因此,选择合适的混交树种,有助于土壤生态环境质量提升及促进森林资源的可持续经营管理。  相似文献   

20.
Despite the nutritional value of Colophospermum mopane leaves to browser's diets, there is limited knowledge on the effect of browsers on the concentration of macronutrients in mopane leaves. A field experiment was conducted in Musina Nature Reserve, Limpopo Province, South Africa to determine the effect of pruning, a proxy for browsing, on the concentration of macronutrients in mopane leaves. Samples were analysed for calcium (Ca), potassium (K), nitrogen (N), phosphorus (P), sulphur (S), chlorine (Cl), magnesium (Mg), nitrate (NO3), sodium (Na), protein and fibre, using inductively coupled plasma atomic emission spectrometry techniques. The effect of pruning on the monthly concentration of macronutrients was tested using a two‐tailed t test: two‐sample assuming equal variance. The seasonal and annual effect of pruning on the concentration of macronutrients was tested using a one‐way ANOVA. Results showed that the amount of Ca, K, N, P, S, Cl, Na, protein and fibre increased during leaf flush in October and then declined as the leaves matured and aged. However, the concentration of Mg and NO3 increased when the leaves reached maturity in June, particularly during senescence stage, and declined thereafter. The concentration of macronutrients between the control and pruned trees was statistically insignificant for most samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号