首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of mouse thymocytes with adenosine and its receptor site agonist, 2-chloroadenosine, induced a pronounced increase in the intracellular cAMP level and resulted in internucleosomal DNA fragmentation followed by cell lysis. Similar DNA fragmentation was induced in peripheral T-lymphocytes prepared from spleen cells but to a lesser extent than in the thymocytes. The DNA fragmentation in both thymocytes and splenic T-lymphocytes was prevented by the addition of actinomycin D and cycloheximide, indicating that this process required mRNA and protein synthesis. The inhibition was accompanied by a reduction in cell lysis as judged by the release of lactate dehydrogenase into the medium. Involvement of cAMP accumulation in inducing DNA fragmentation was supported by the results of experiments with cAMP analogs such as dibutyryl cAMP and 8-bromo-cAMP, and cAMP level-raising drugs including forskolin, cholera toxin, and isobutylmethyxanthine. The latter agents induced pronounced or sustained elevation of cellular cAMP followed by internucleosomal DNA cleavage in T-lymphocytes. These results suggest that adenosine receptor-mediated accumulation of cyclic AMP regulates T-lymphocyte death through inducement of internucleosomal DNA cleavage.  相似文献   

2.
Agents that elevate cAMP stimulate DNA fragmentation in thymocytes   总被引:16,自引:0,他引:16  
Increases in the cAMP level are often inhibitory in mature T lymphocytes and may be involved in the development of tolerance to self Ag. In this report, agents inducing an increase in the cAMP level by independent mechanisms were found to stimulate DNA fragmentation, characteristic of a suicide program known as apoptosis, in isolated thymocytes. Data obtained with cAMP analogs known to act synergistically to stimulate protein kinase A suggested that the latter directly mediated endonuclease activation. Agents previously shown to stimulate protein kinase C and to inhibit Ca2(+)-dependent, TCR-mediated thymocyte apoptosis, including IL-1, also blocked both DNA fragmentation and cell death in response to cAMP, suggesting interactions ("cross-talk") between the two protein kinase systems. As it has been proposed that apoptosis mediates negative cell selection in the thymus, our results indicate that cAMP may play a role in the development of functional mature T lymphocytes.  相似文献   

3.
To evaluate a possible modulation by protein kinase C of hormonal, cAMP-mediated effects on renal epithelial cells, we studied the effect of protein kinase C activators and of bradykinin on intracellular cAMP accumulation in MDCK cells. A 15-min pretreatment of cells with phorbol 12-myristate 13-acetate or 1-oleoyl-2-acetylglycerol induced a dose-dependent inhibition of vasopressin-stimulated cAMP synthesis, but not of basal or glucagon-, prostaglandin E2-, and forskolin-stimulated cAMP generation. 4 alpha-Phorbol 12,13-didecanoate, inactive on protein kinase C, did not affect cAMP accumulation. Bradykinin (0.1-10 microM) also inhibited the stimulatory effect of vasopressin on cAMP synthesis in a concentration-dependent manner, but affected neither basal cAMP content, nor its stimulation by glucagon, prostaglandin E2 and forskolin. The effect of activators of protein kinase C and of bradykinin occurred while renal prostaglandin synthesis was blocked with indomethacin. The inhibitory effect of protein kinase C activators and bradykinin on cAMP generation was reversed by the protein kinase C inhibitor H7, was enhanced by monensin, one effect of which is to block the recycling of membrane receptors, and persisted when the GTP-binding protein N1 was blocked with 1 mM Mn2+. Our data suggest that: protein kinase C can modulate the tubular effects of vasopressin by inhibiting cAMP generation; this effect is not mediated by renal prostaglandins, and might result from a direct action on the vasopressin receptor, or on its coupling with Ns; the modulation by bradykinin of vasopressin effects are likely to be exerted, at least partly, through activation of protein kinase C.  相似文献   

4.
U937 cells can be induced to express receptor for complement 5a (C5aR) by sequential 2 day treatments of cells with dihydroxyvitamin D-3 (1,25(OH)2D3) followed by prostaglandin E2. We asked whether the action of prostaglandin E2 to cause maximal C5aR expression required only activation of the cAMP-dependent protein kinase (PKA). Prostaglandin E2 dose dependently activated PKA in control and 1,25(OH)2D3 treated cells; by 4 h the PKA did not respond to further prostaglandin E2 challenge. We hypothesized that prostaglandin E2 actions transduced via PKA should be complete by 4 h; i.e., C5aR induction should be equivalent in cells treated with prostaglandin E2 for 4 h and for 2 days. All cells were treated for the first 2 days with 1,25(OH)2D3 and the second 2 days with prostaglandin E2 or cAMP analogs. C5aR number was measured after 4 days total culture. 4 h pulse treatments with agents were given at the end of the 1,25(OH)2D3 treatment. Cells exposed to a 4 h pulse of prostaglandin E2 had only 68.2 +/- 4.4% the amount of C5aR seen in cells continuously exposed to prostaglandin E2. Continuous culture with a cAMP analog pair (50 microM each of 8-thiomethyl-cAMP + N6-benzoyl-cAMP), which caused a 41.7% +/- 10.8% increase PKA activation above basal, resulted in only 51% +/- 16% of the C5aR numbers seen in cells cultured for 2 days with prostaglandin E2, where PKA remained at basal activity. We therefore concluded that C5aR expression caused by prostaglandin E2 could not be ascribed entirely to duration or degree of activation of cAMP-dependent signalling pathways. We investigated the possibility that the calcium sensitive protein kinase C was involved. Cytoplasmic protein kinase C was increased 154% +/- 14% above control in cells treated with sequential 2 days treatments of 1,25(OH)2D3 and prostaglandin E2. A 147% +/- 2% increase in membrane associated protein kinase C was also seen 10 min after phorbol myristate acetate stimulation in the above treatment group. Finally, phorbol myristate acetate augmented the C5aR induction caused by cAMP analog. We propose that the mechanism of prostaglandin E2 synergism with 1,25(OH)2D3 in causing C5aR induction in U937 cells includes signal transduction not only by the cAMP cascade, but also via protein kinase C modulated pathways.  相似文献   

5.
12-O-Tetradecanoylphorbol 13-acetate (TPA) potentiated the action of cAMP in DNA cleavage in thymocytes induced by a low concentration of adenosine receptor-site agonists such as adenosine, 2-chloroadenosine and forskolin. The enhancement of DNA cleavage by TPA was also observed in dibutyryl cAMP-treated thymocytes. On the other hand, TPA suppressed accumulation of cAMP by the adenosine receptor-site agonists. These results suggest that activation of protein kinase C inhibits cAMP production, but stimulates cAMP-triggered process to induce DNA cleavage and death of thymocytes.  相似文献   

6.
A phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), induced the cleavage of nuclear DNA at linker regions in cultured mouse thymocytes. Similar DNA fragmentation was induced by 1-oleoyl-2-acetyl-glycerol, a synthetic diacylglycerol, but not by 4 alpha-phorbol-12,13 didecanoate. The DNA fragmentation was inhibited by 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine dihydrochloride, an inhibitor of protein kinase C, as well as actinomycin D and cycloheximide. It appears that TPA induces DNA cleavage through activation of protein kinase C and synthesis of yet unidentified protein(s). That the inhibition of DNA fragmentation was accompanied by a reduction in cell lysis suggests a causal relationship between DNA fragmentation and cell death.  相似文献   

7.
8.
Gamma-irradiation, glucocorticoid hormones, and calcium ionophores stimulate a suicide process in thymocytes, known as apoptosis or programmed cell death, that involves internucleosomal DNA fragmentation by a Ca(2+)- and Mg(2+)-dependent nuclear endonuclease. In this study we report that N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) blocked DNA fragmentation and cell death in thymocytes exposed to gamma-radiation, dexamethasone, or calcium ionophore A23187. WR-1065 protected the thymocytes from radiation-induced apoptosis when incubated with cells after irradiation but not before and/or during irradiation. WR-1065 inhibited Ca(2+)- and Mg(2+)-dependent DNA fragmentation in isolated thymocyte nuclei. Our results suggest that WR-1065 protects thymocytes from apoptosis by inhibiting Ca(2+)- and Mg(2+)-dependent nuclear endonuclease action.  相似文献   

9.
Glucocorticoid hormones and Ca2+ ionophores stimulate a suicide process in immature thymocytes, known as apoptosis or programmed cell death, that involves extensive DNA fragmentation. We have recently shown that a sustained increase in cytosolic Ca2+ concentration stimulates DNA fragmentation and cell killing in glucocorticoid- or ionophore-treated thymocytes. However, a sustained increase in the cytosolic Ca2+ level also mediates lymphocyte proliferation, suggesting that apoptosis is blocked in proliferating thymocytes. In this study we report that phorbol esters, which selectively stimulate protein kinase C (PKC), blocked DNA fragmentation and cell death in thymocytes exposed to Ca2+ ionophore or glucocorticoid hormone. The T cell mitogen, concanavalin A, which stimulates thymocytes by a mechanism that involves PKC activation, caused concentration-dependent increases in the cytosolic Ca2+ level that did not result in DNA fragmentation, but incubation with concanavalin A and the PKC inhibitor H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) resulted in both DNA fragmentation and cell death. Phorbol ester directly inhibited Ca2+-dependent DNA fragmentation in isolated thymocyte nuclei. Our results strongly suggest that PKC activation blocks thymocyte apoptosis by preventing Ca2+-stimulated endonuclease activation.  相似文献   

10.
One of the earliest features of apoptosis is the induction of the mitochondrial permeability transition (MPT) due to opening of a pore in the mitochondrial membrane. We estimated the Ca2+ capacity of mitochondria (a threshold level of Ca2+ that induces the release of this cation from mitochondria) during apoptosis. Incubation of thymocytes at 37°C for 4 h equally decreased the mitochondrial Ca2+ capacity both in the presence and the absence of dexamethasone, an inducer of apoptosis. At the same time, dexamethasone significantly stimulated internucleosomal DNA fragmentation, which is one of the manifestations of apoptosis. Cyclosporin A prevented the time-dependent decrease in the Ca2+ capacity of mitochondria but did not affect internucleosomal DNA fragmentation. Therefore, induction of apoptosis assessed by internucleosomal DNA fragmentation is not mediated by the mitochondrial permeability transition.  相似文献   

11.
Development of tolerance to self Ag occurs during a negative cell selection process in the thymus. This selection process is thought to involve interactions between Ag-specific thymocyte receptors and self Ag presented by the MHC proteins on accessory cells, resulting in deletion of potentially harmful self-reactive precursors. However, the mechanisms underlying this clonal deletion have not been identified. In confirmation of previous findings (C. A. Smith, G. T. Williams, R. Kingston, E. J. Jenkins, and J. J. T. Owen, 1989. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337:181), we have found that an anti-CD3 antibody stimulated DNA fragmentation, characteristic of a suicide mechanism known as apoptosis or programmed cell death (PCD), in suspensions of human thymocytes. Endonuclease activation and cell killing were dependent on an early, sustained increase in cytosolic Ca2+ concentration, most of which was of extracellular origin. Although the magnitude and duration of the Ca2+ increase were similar to those observed in response to Con A, the mitogen did not stimulate DNA fragmentation or cell death. Phorbol ester prevented Ca2+-dependent DNA fragmentation and cell killing in response to anti-CD3 or other agents that stimulated PCD, suggesting that activation of protein kinase C abrogated cell suicide. Disappearance of CD4+CD8+ immature thymocytes was generally observed in response to all agents that stimulated PCD, whereas mature PBL were insensitive to stimulation of PCD. Our results suggest that antibody-mediated stimulation of immature thymocytes via the TCR complex results in Ca2+-dependent, endonuclease-mediated cell killing, depending on the activation status of protein kinase C.  相似文献   

12.
Calcium ionophore, A23187, is known to be a comitogen, but it activates a suicide process characterized by DNA fragmentation at linker regions in mouse immature thymocytes. It did not induce DNA fragmentation in T lymphocytes prepared from lymph node and spleen cells. Induction of DNA fragmentation by A23187 depends on protein phosphorylation and synthesis of mRNA and protein, because an inhibitor of protein kinase, 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H-7), actinomycin D, and cycloheximide, respectively, inhibits the DNA fragmentation and cell death. Studies adding the inhibitors at various times show that protein phosphorylation and mRNA synthesis occur within a few hours after incubation with A23187 followed by the protein synthesis responsible for inducing DNA fragmentation. Phorbol esters, 12-O-tetradecanoyl 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBD), which are capable of activating protein kinase C, also induced similar DNA fragmentation in immature thymocytes, followed by cell death. PBD committed the suicide process after 6 h of incubation, because the DNA fragmentation above the control level was not induced when PDB was removed from the medium before 6 h of incubation. A23187 or a phorbol ester alone induced DNA fragmentation followed by cell death, whereas the addition of TPA at low concentration inhibited the DNA fragmentation induced by A23187 accompanied with an increase in DNA synthesis. The result suggests that TPA switched a suicide process induced by A23187 to an opposite process: stimulation of DNA synthesis. Physiologic factors and mechanisms which regulate cell proliferation and death in the thymus are not known at present, but the signals by protein kinases and calcium ions may regulate both cell proliferation and death, independently, synergistically or antagonistically.  相似文献   

13.
14.
The mechanism of glucocorticoid-induced internucleosomal DNA cleavage and cytolysis of lymphatic cells is not known. Recent data (Compton, M.M., and Cidlowski, J.A. (1987) J. Biol. Chem. 262, 8288-8292) suggested that in vivo treatment of rat thymocytes with glucocorticoids induces a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis. In this paper, the possibility that lymphocytolysis may result from glucocorticoid-induced nuclease(s) was examined. Using the rat thymocytes as a model system, we have shown by electrophoretic, enzymatic, and amino acid sequence analysis that the putative glucocorticoid-induced nucleases identified recently by Compton and Cidlowski are in fact H1, H1(0), and core histones, and their gross appearance is not the result of new histone protein synthesis, but a result of the release of histone-containing nucleosomes during chromatin breakdown. Evidence presented here shows that the putative induced nuclease activity is an artifact of the assay system employed. Because our data do not support induction of a glucocorticoid-induced nuclease(s), we examined the possibility that DNA cleavage might be induced by activation of a constitutive endogenous endonuclease. We have shown that it is possible to produce characteristic internucleosomal DNA cleavage of rat thymocytes, merely by incubating intact nuclei from untreated adrenalectomized rat thymocytes with Ca2+ and Mg2+ for a short period of time. However, in glucocorticoid-sensitive human CEM-C7 lymphocytes activation of internucleosomal DNA cleavage was independent of calcium uptake. We conclude that glucocorticoid induction of internucleosomal DNA fragmentation does not necessarily require expression of a new nuclease(s), but is the result of the activation of a constitutive endogenous endonuclease(s). Also, our data suggest that the mechanism which controls activation of internucleosomal DNA cleavage in rat thymocytes differs from that which operates in CEM-C7 lymphocytes.  相似文献   

15.
Neurotensin, bradykinin and somatostatin inhibited in a time- and concentration-dependent manner prostaglandin E1- or forskolin-stimulated cAMP production in neuroblastoma N1E115 cells. Cell treatment with 1 microgram/ml pertussis toxin for 6 hours reversed the inhibition elicited by peptides after short incubation periods (less than or equal to 1 min) but, in contrast, had no effect after longer incubation periods (greater than or equal to 3 min). Fluoroaluminate also inhibited prostaglandin E1-stimulated cAMP production in N1E115 cells, and this effect was not reversed by pertussis toxin. The 6 hour treatment with pertussis toxin was shown to be sufficient to ADP ribosylate virtually all of the 41 kD protein substrate corresponding to the alpha subunit of Gi. Protein kinase C activation with phorbol ester did not inhibit basal or stimulated cAMP production. Our data point to the existence of both pertussis toxin sensitive and insensitive mechanisms of neuropeptide-mediated inhibition of cAMP formation in N1E115 cells. The toxin insensitive response is not mediated by protein kinase C. The possibility is discussed that it results from the activation of a pertussis toxin insensitive G protein.  相似文献   

16.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

17.
Zymosan and phorbol ester induced in liver macrophages the release of arachidonic acid, prostaglandin E2, and superoxide; the calcium ionophore A 23187 elicited a release of arachidonic acid and prostaglandin E2 but not of superoxide, and exogenously added arachidonic acid led to the formation of prostaglandin E2 only. The zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide was dose-dependently inhibited by staurosporine and K252a, two inhibitors of protein kinase C, and by pretreatment of the cells with phorbol ester which desensitized protein kinase C. The release of arachidonic acid or prostaglandin E2 following the addition of A 23187 or arachidonic acid was not affected by these treatments. Zymosan and phorbol ester but not A 23187 or arachidonic acid induced a translocation of protein kinase C from the cytosol to membranes in intact cells. These results demonstrate an involvement of protein kinase C in the zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide; the release of arachidonic acid and prostaglandin E2 elicited by A 23187 and the formation of prostaglandin E2 from exogenously added arachidonic acid, however, is independent of an activation of protein kinase C.  相似文献   

18.
Glutathione (GSH) depletion caused by l-buthionine-(S,R)-sulfoximine (BSO) induced apoptosis that was recognized by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick endo-labeling (TUNEL), nuclear DNA staining with fluorescence dye, and internucleosomal DNA fragmentation in C6 rat glioma cells. The BSO-induced cell death was associated with caspase-3 activation. Lipid peroxidation and protein kinase C (PK-C) activation were observed during the apoptosis of C6 cells, and these events were inhibited by antioxidants and iron chelators without affecting BSO-induced GSH depletion. Furthermore, approximately 2 Mbp giant DNA fragments were observed in the BSO-treated cells. The giant DNA fragmentation were followed by approximately 30-700 kbp and then less than 100 kbp, including internucleosomal DNA fragmentations. Such serial DNA degradation was prevented by the antioxidants, the iron chelators, and the PK-C inhibitors. These results suggest that during apoptosis induced by GSH-depletion caused by BSO, reactive oxygen species endogenously produced cause lipid peroxidation and that the lipid peroxidation induced PK-C activation, processes which are thought to be involved in the giant DNA, high-molecular-weight DNA, and the internucleosomal DNA fragmentations.  相似文献   

19.
The specific activity of protein kinase C in rat skeletal myoblasts decreased when they were exposed for very short periods to isoproterenol, forskolin, dibutyryl cyclic AMP (Bt2cAMP), or the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of Bt2cAMP or forskolin only the cytosolic but not the membrane-bound kinase activity was found to decrease. Treatment with TPA, however, led to a decrease in the activity of the enzyme both in the cytosolic as well as the membrane fractions. The effects observed in vivo could be duplicated in crude extracts of myoblasts incubated with cAMP analogues or TPA. In the presence of ATP, protein kinase C activity decreased considerably in crude cytosolic fractions treated with the cAMP analogues, but a requirement for ATP was not evident for the decrease in activity brought about by TPA. For the cAMP analogues the decrease in protein kinase C was also prevented by incubation of the extracts with an inhibitor of cAMP-dependent protein kinase. The regulation of protein kinase C by Bt2cAMP (but not by TPA) was altered in Rous sarcoma virus-transformed myoblasts. It is considered likely that a component affected by cAMP (probably a substrate for cAMP-dependent protein kinase) participates in the regulation of protein kinase C activity, and it is altered in unknown ways in transformed myoblasts.  相似文献   

20.
Cyclic nucleotide-dependent protein kinases in airway smooth muscle   总被引:6,自引:0,他引:6  
Because of the potential importance of cyclic nucleotide-dependent protein kinases in the regulation of airway smooth muscle tone, we have examined some of the characteristics of these enzymes in the soluble fraction of canine trachealis homogenates. In the absence of added cAMP, the heat-stable cAMP-dependent protein kinase inhibitor (PKI) abolished only a half of the 32P incorporation into mixed histones. The remaining activity appeared to be contributed by a cyclic nucleotide-independent enzyme. Phosphotransferase activity was enhanced 5-fold by 5 microM cAMP but only 70% of the cAMP-stimulated activity could be inhibited by PKI. The sensitivity of the cyclic nucleotide-dependent, PKI-resistant enzyme to cAMP, cGMP, and Mg2+ indicated that it was cGMP-dependent protein kinase. Because of the large amount of cyclic nucleotide-independent activity, and the ability of cAMP to activate cGMP-dependent protein kinase, the traditional "-cAMP/+cAMP" ratio did not provide an accurate assessment of the in vivo activation state of cAMP-dependent protein kinase. However, a modified assay was developed which allowed the precise measurement of cAMP-dependent, cGMP-dependent, and cyclic nucleotide-independent protein kinase activities. Using this new method, the cAMP-dependent protein kinase activity ratio of 0.239 in untreated trachealis strips was increased to 0.355 and 0.386 by prior exposure of the intact tissue to the smooth muscle relaxants isoproterenol and prostaglandin E2, respectively. The results of this study are consistent with the proposed role of cAMP-dependent protein kinase in the regulation of smooth muscle contractile function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号