首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site-specific chemical modification of horse heart cytochrome c at Lys-13 and -72 using 4-chloro-3,5-dinitrobenzoic acid (CDNB) increases the electron self-exchange rate of the protein. In the presence of 0.24 M cacodylate (pH* 7.0) the electron self-exchange rate constants, kex, measured by a 1H NMR saturation transfer method at 300 K, are 600, 6 X 10(3) and 6 X 10(4) M-1 X s-1 for native, CDNP-K13 and CDNP-K72 cytochromes c respectively. Repulsive electrostatic interactions, which inhibit cytochrome c electron self-exchange, are differentially affected by modification. Measurements of 1H NMR line broadening observed with partially oxidised samples of native cytochrome c show that ATP and the redox inert multivalent anion Co(CN)3-6 catalyse electron self-exchange. At saturation a limiting value of approximately 1.4 X 10(5) M-1 X s-1 is observed for both anions.  相似文献   

2.
The electron transfer reaction between ferrocyanide ion and the blue copper protein, stellacyanin, has been investigated by means of 13C NMR line broadening of the inorganic oxidant. The temperature dependence of the ferrocyanide line broadening gives an activation energy for the electron transfer reaction of 17 +/- 3 kJ. The apparent rate constant decreases with increasing concentration of K4Fe(CN)6, a result which can be explained either by formation of a strong precursor ferrocyanide--stellacyanin [Cu(II)] complex or by increased formation of KFe(CN)3-6 ion pairs. The direct electron transfer between ferrocyanide and ferricyanide has also been studied by 13C NMR line broadening of the former species. The ferricyanide concentration dependence of the exchange line broadening yields a value for the apparent second-order rate constant at 25 degrees C of k = 1.65 . 10(3) M-1 . s-1, in agreement with previously reported values derived from 14N NMR and isotope exchange studies. This rate constant shows a linear dependence on the K+ concentration, independent of ionic strength, a result which confirms the importance of ion pair species such as KFe(CN)3-6 and KFe(CN)2-6 in the direct electron transfer mechanism. The general applications of the method are discussed, including the considerations which suggest that a wide range of electron transfer rates, from about 1 s-1 to 4 . 10(3) s-1, are, in principle, accessible to this technique. The potential utility of ferrocyanide 13C spin--lattice relaxation time measurements is decreasing the lower limit of this range is also discussed.  相似文献   

3.
A comparative study using laser flash photolysis of the kinetics of reduction and intramolecular electron transfer among the redox centers of chicken liver xanthine dehydrogenase and of bovine milk xanthine oxidase is described. The photogenerated reductant, 5-deazariboflavin semiquinone, reacts with the dehydrogenase (presumably at the Mo center) in a second-order manner, with a rate constant (k = 6 x 10(7) M-1 s-1) similar to that observed with the oxidase [k = 3 x 10(7) M-1 s-1; Bhattacharyya et al. (1983) Biochemistry 22, 5270-5279]. In the case of the dehydrogenase, neutral FAD radical formation is found to occur by intramolecular electron transfer (kobs = 1600 s-1), presumably from the Mo center, whereas with the oxidase the flavin radical forms via a bimolecular process involving direct reduction by the deazaflavin semiquinone (k = 2 x 10(8) M-1 s-1). Biphasic rates of Fe/S center reduction are observed with both enzymes, which are due to intramolecular electron transfer (kobs approximately 100 s-1 and kobs = 8-11 s-1). Intramolecular oxidation of the FAD radical in each enzyme occurs with a rate constant comparable to that of the rapid phase of Fe/S center reduction. The methylviologen radical, generated by the reaction of the oxidized viologen with 5-deazariboflavin semiquinone, reacts with both the dehydrogenase and the oxidase in a second-order manner (k = 7 x 10(5) M-1 s-1 and 4 x 10(6) M-1 s-1, respectively). Alkylation of the FAD centers results in substantial alterations in the kinetics of the reaction of the viologen radical with the oxidase but not with the dehydrogenase. These results suggest that the viologen radical reacts directly with the FAD center in the oxidase but not in the dehydrogenase, as is the case with the deazaflavin radical. The data support the conclusion that the environments of the FAD centers differ in the two enzymes, which is in accord with other studies addressing this problem from a different perspective [Massey et al. (1989) J. Biol. Chem. 264, 10567-10573]. In contrast, the rate constants for intramolecular electron transfer among the Mo, FAD, and Fe/S centers in the two enzymes (where they can be determined) are quite similar.  相似文献   

4.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

6.
Kinetics and mechanism in the reaction of gene regulatory proteins with DNA   总被引:28,自引:0,他引:28  
We have measured the kinetic properties of the Escherichia coli cAMP receptor protein (CAP) and lac repressor interacting with lac promoter restriction fragments. Under our reaction conditions (10 mM-Tris X HCl (pH 8.0 at 21 degrees C), 1 mM-EDTA, 10 microM-cAMP, 50 micrograms bovine serum albumin/ml, 5% glycerol), the association of CAP is at least a two-step process, with an initial, unstable complex formed with rate constant kappa a = 5(+/- 2.5) X 10(7) M-1 s-1. Subsequent formation of a stable complex occurs with an apparent bimolecular rate constant kappa a = 6.7 X 10(6) M-1 s-1. At low total DNA concentration, the dissociation rate constant for the specific CAP-DNA complex is 1.2 X 10(-4) s-1. The ratio of formation and dissociation rate constants yields an estimate of the equilibrium constant, Keq = 5 X 10(10) M-1, in good agreement with static results. We observed that the dissociation rate constant of both CAP-DNA and repressor-DNA complexes is increased by adding non-specific "catalytic" DNA to the reaction mixture. CAP dissociation by the concentration-dependent pathway is second-order in added non-specific DNA, consistent with either the simultaneous or the sequential participation of two DNA molecules in the reaction mechanism. The results imply a role for distal DNA in assembly-disassembly of specific CAP-DNA complexes, and are consistent with a model in which the subunits in the CAP dimer separate in the assembly-disassembly process. The dissociation of lac repressor-operator complexes was found to be DNA concentration-dependent as well, although in contrast to CAP, the reaction is first-order in catalytic DNA. Added excess operator-rich DNA gave more rapid dissociation than equivalent concentrations of non-specific DNA, indicating that the sequence content of the competing DNA influences the rate of repressor dissociation. The simplest interpretation of these observations is that lac repressor can be transferred directly from one DNA molecule to another. A comparison of the translocation rates calculated for direct transfer with those predicted by the one-dimensional sliding model indicates that direct transfer may play a role in the binding site search of lac repressor.  相似文献   

7.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

8.
Camphor binding to a possible receptor of rat olfactory epithelium has been studied within the ligand concentration range 10(-11)-10(-6) M. At these concentrations camphor is bound by a set of receptors. They are distinguished by both the affinity to the ligand (K1 = 5 X 10(-10) M, K2 = 3.5 X 10(-8) M, K3 approximately equal to 10(-6) M) and their amount in the epithelium. The differences in the affinities are due to different values of the association rate constant of camphor (k1), which varies from 10(6) M-1 X s-1 for the receptors with high affinity up to 2 X 10(2) M-1 X s-1 for those with low affinity. These data are discussed in terms of equilibrium and kinetic models of the receptor-stimulus interaction.  相似文献   

9.
Rate of ATP synthesis by dynein   总被引:1,自引:0,他引:1  
The rates of ATP synthesis and release by the dynein ATPase were determined in order to estimate thermodynamic parameters according to the pathway: (Formula: see text). Dynein was incubated with high concentrations of ADP and Pi to drive the net synthesis of ATP, and the rate of ATP production was monitored fluorometrically by production of NADPH through a coupled assay using hexokinase and glucose-6-phosphate dehydrogenase. The turnover number for the rate of release of ATP from 22S dynein was 0.01 s-1 per site at pH 7.0, 28 degrees C, assuming a molecular weight of 750 000 per site. The same method gave a rate of ATP synthesis by myosin subfragment 1 of 3.4 X 10(-4) s-1 at pH 7.0, 28 degrees C. The rate of ATP synthesis at the active site was estimated from the time dependence of medium phosphate-water oxygen exchange. Dynein was incubated with ADP and [18O] Pi, and the rate of loss of the labeled oxygen to water was monitored by 31P NMR. A partition coefficient of 0.31 was determined, which is equal to k-2/(k-2 + k3). Assuming k3 = 8 s-1 [Johnson, K.A. (1983) J. Biol. Chem. 258, 13825-13832], k-2 = 3.5 s-1. From the rates of ATP binding and hydrolysis measured previously (Johnson, 1983), the equilibrium constants for ATP binding and hydrolysis could be calculated: K1 = 5 X 10(7) M-1 and K2 = 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Electron transfer from cobaltocytochrome c to ferricytochrome c has been studied by stopped-flow kinetics. The second-order rate constant at pH 7.0, 0.1 ionic strenght, 0.2 M phosphate, and 25 degrees C is 8.3 x 103 M-1 s-1. The activation parameters obtained from measurements made between 20 and 50 degrees C are deltaHnot equal to = 2.3 kcal mol-1 and deltaSnot equal to = -33 eu. The rate constant is not significantly dependent on ionic strength; it is also relatively independent of pH between the pK values for conformation transitions. The rate diminishes at pH greater than 12. The self-exchange reaction of cobalt cytochrome c was investigated with pulsed Fourier transform 1H NMR. The rate is too slow on the 1H NMR scale; it is estimated to be less than 133 M-1 s-1. These results together with the self-exchange rates of iron cytochrome c [Gupta, R.K., Koenig, S. H., and Redfield, A. G. (1972), J. Magn. Reson. 7, 66] were analyzed by theories of Jortner and Hopfield. The theories predict the self-exchange of Cocyt c to be too slow for 1H NMR determination. The rate constant calculated by the nonadiabatic multiphonon electron-tunneling theory for the Fecyt c-Fecyt c+ and Cocyt c-Fecyt c+ electron transfers are in good agreement with experiments.  相似文献   

11.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

12.
Amidolytic assays have been developed to determine factor XIIa, factor XIa and plasma kallikrein in mixtures containing variable amounts of each enzyme. The commercially available chromogenic p-nitroanilide substrates Pro-Phe-Arg-NH-Np (S2302 or chromozym PK), Glp-Pro-Arg-NH-Np (S2366), Ile-Glu-(piperidyl)-Gly-Arg-NH-Np (S2337), and Ile-Glu-Gly-Arg-NH-Np (S2222) were tested for their suitability as substrates in these assays. The kinetic parameters for the conversion of S2302, S2222, S2337 and S2366 by beta factor XIIa, factor XIa and plasma kallikrein indicate that each active enzyme exhibits considerable activity towards a number of these substrates. This precludes direct quantification of the individual enzymes when large amounts of other activated contact factors are present. Several serine protease inhibitors have been tested for their ability to inhibit those contact factors selectively that may interfere with the factor tested for. Soybean trypsin inhibitor very efficiently inhibited kallikrein, inhibited factor XIa at moderate concentrations, but did not affect the amidolytic activity of factor XIIa. Therefore, this inhibitor can be used to abolish a kallikrein and factor XIa contribution in a factor XIIa assay. We also report the rate constants of inhibition of contact activation factors by three different chloromethyl ketones. D-Phe-Pro-Arg-CH2Cl was moderately active against contact factors (k = 2.2 X 10(3) M-1 s-1 at pH 8.3) but showed no differences in specifity. D-Phe-Phe-Arg-CH2Cl was a very efficient inhibitor of plasma kallikrein (k = 1.2 X 10(5) M-1 s-1 at pH 8.3) whereas it slowly inhibited factor XIIa (k = 1.4 X 10(3) M-1 s-1) and factor XIa (k = 0.11 X 10(3) M-1 s-1). Also Dns-Glu-Gly-Arg-CH2Cl was more reactive towards kallikrein (k = 1.6 X 10(4) M-1 s-1) than towards factor XIIa (k = 4.6 X 10(2) M-1 s-1) and factor XIa (k = 0.6 X 10(2) M-1 s-1). Since Phe-Phe-Arg-CH2Cl is highly specific for plasma kallikrein it can be used in a factor XIa assay selectively to inhibit kallikrein. Based on the catalytic efficiencies of chromogenic substrate conversion and the inhibition characteristics of serine protease inhibitors and chloromethyl ketones we were able to develop quantitative assays for factor XIIa, factor XIa and kallikrein in mixtures of contact activation factors.  相似文献   

13.
The putative intermediate dienol (2) in the steroid isomerase (KSI) catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3) has been independently generated and tested as a substrate for KSI. At pH 7, dienol 2 is converted by KSI to a mixture of 1 (46%) and 3 (54%). The apparent second-order rate constant for reaction of 2 with KSI to produce 3 (kappa cat/Km = 2.3 x 10(8) M-1 s-1) is similar to that for reaction of 1 with KSI (kappa cat/Km = 2.1 x 10(8) M-1 s-1), demonstrating that 2 is kinetically competent. Isomerization of 1 by KSI in D2O gives only 5% of solvent deuterium incorporated into the product 3. When 2 reacts with KSI in D2O, and the product 3 is isolated (from direct reaction of 2 and from subsequent conversion of the 1 initially formed), ca. 80 atom % deuterium is located at C-6 beta, confirming that protonation of the dienol by KSI occurs at the same face as the proton transfer in the KSI catalyzed reaction of 1 to 3.  相似文献   

14.
S S Reid  J A Cowan 《Biochemistry》1990,29(25):6025-6032
The thermodynamics and kinetics of magnesium binding to tRNA(Phe)(yeast) have been studied directly by 25Mg NMR. In 0.17 M Na+(aq), tRNA(Phe) exists in its native conformation and the number of strong binding sites (Ka greater than or equal to 10(4)) was estimated to be 3-4 by titration experiments, in agreement with X-ray structural data for crystalline tRNA(Phe) (Jack et al., 1977). The set of weakly bound ions were in slow exchange and 25Mg NMR resonances were in the near-extreme-narrowing limit. The line shapes of the exchange-broadened magnesium resonance were indistinguishable from Lorentzian form. The number of weak magnesium binding sites was determined to be 50 +/- 8 in the native conformation and a total line-shape analysis of the exchange-broadened 25 Mg2+ NMR resonance gave an association constant Ka of (2.2 +/- 0.2) X 10(2) M-1, a quadrupolar coupling constant (chi B) of 0.84 MHz, an activation free energy (delta G*) of 12.8 +/- 0.2 kcal mol-1, and an off-rate (koff) of (2.5 +/- 0.4) X 10(3) s-1. In the absence of background Na+(aq), up to 12 +/- 2 magnesium ions bind cooperatively, and 73 +/- 10 additional weak binding sites were determined. The binding parameters in the nonnative conformation were Ka = (2.5 +/- 0.2) X 10(2) M-1, chi B = 0.64 MHz, delta G* = 13.1 +/- 0.2 kcal mol-1, and koff = (1.6 +/- 0.4) X 10(3) s-1. In comparison to Mg2+ binding to proteins (chi B typically ca. 1.1-1.6 MHz) the lower chi B values suggest a higher degree of symmetry for the ligand environment of Mg2+ bound to tRNA. A small number of specific weakly bound Mg2+ appear to be important for the change from a nonnative to a native conformation. Implications for interactions with the ribosome are discussed.  相似文献   

15.
Both eaq- and .OH have been found to react with 8-methoxypsoralen (8-MOP), giving rate-constants of 1.1 X 10(10) M-1 s-1. Transient spectra of products from the reactions of eaq-, .OH with 8-MOP have been characterized. Rate-constants for the oxidation by 8-MOP of reduced and oxidized DNA bases have also been measured and found to lie in the range 3-6 X 10(9) M-1 s-1. Oxidation of reduced bases occurs by electron transfer with 100 per cent efficiency in all cases. However, for oxidized bases, only approximately 25 per cent of the intermediate yield produced by OH attack undergoes electron transfer; the balance of the oxidized base appears to form adducts with 8-MOP.  相似文献   

16.
A series of peptidyl alpha-keto esters, alpha-keto amides, alpha-keto acids, and alpha-diketones were synthesized which reversibly inhibit papain and cathepsin B. Methyl 3-(N-benzyloxycarbonyl-L-phenylalanyl)amino-2-oxopropionate (a dicarbonyl compound) inhibits papain with a Ki value of 1 microM, whereas the Ki of 3-(N-acetyl-L-phenylalanyl)aminopropanone (a monocarbonyl compound) is 1.5 mM (M. R. Bendall et al., 1979. Eur. J. Biochem. 79, 201-209). Both carbonyl groups are required for effective inhibition. Extension of these inhibitors by addition of P substituents (e.g., hexyl) does not affect the Ki for papain, but reduces Ki for cathepsin B 33-fold. For these two enzymes slow binding inhibition was observed with slow on rates (kappa on, 5.2 X 10(2) M-1 s-1 for papain, and 2.7 X 10(3) M- s-1 for cathepsin B). Addition of a P3 substituent (glycine) has no effect on Ki. We propose that the mechanism of inhibition involves the formation of a hemithioketal by addition of the active-site thiol to the carbonyl group of the inhibitor closer to the N-terminus. The hemithioketal intermediate is most likely stabilized by the electron withdrawing effect of the second carbonyl group.  相似文献   

17.
Calcium ion binding to phospholipase A2 and its zymogen has been studied by 43Ca NMR. The temperature dependence of the band shape of the calcium-43 NMR signal has been used to calculate the calcium ion exchange rate. The on-rate was calculated to be 5 X 10(6) M-1 s-1, which is 2 orders of magnitude less than the diffusion limit of the hydrated Ca2+ ion in water. The 43Ca quadrupole coupling constant for calcium ions bound to phospholipase, chi = 1.4 MHz, is significantly larger than those found for EF-hand proteins, indicating a less symmetric site. For prophospholipase A2, we found chi = 0.8 MHz, indicating a calcium binding site, which is somewhat more symmetric than the EF-hand sites. The dependence of the 43Ca NMR band shape on the calcium ion concentration showed that there are two cation binding sites on the phospholipase A2 molecule: K1 = 4 X 10(3) M-1 and K2 = 20 M-1. The strong site was found to be affected by a pKa = 6.5 and the weak site by pKa = 4.5.  相似文献   

18.
The NADPH-linked acetoacetyl-CoA reductase, (R)-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.36), from the bacterium Zoogloea ramigera, involved in the formation of D-3-hydroxybutyryl-CoA for poly(D-3-hydroxybutyrate) biosynthesis, has been purified from an over-producing Escherichia coli strain. The purification was achieved in two steps, yielding an electrophoretically homogeneous enzyme of high specific activity (608 U/mg). The enzyme is an alpha 4 homotetramer of four 25-kDa subunits. It has a Km of 2 microM and a kcat/Km of 1.8 X 10(8) M-1 s-1 for acetoacetyl-CoA; it is inhibited by acetoacetyl-CoA above 10 microM. K is 10(-10) M for the dehydrogenation. Kinetic studies of the back reaction revealed a sequential mechanism involving a ternary complex. The stereospecificity of the hydride-equivalent transfer was demonstrated using NMR techniques to be 4S (B side). Using the fingerprint method proposed by Wierenga et al. [(1986) J. Mol. Biol. 187, 101-107], we identified a 28-residue stretch (residues 3-31) as a possible NADPH fold. Finally the specificity of the reductase was examined using 3-oxo-acyl-CoA analogs and analogs lacking the adenosine 3',5'-bisphosphate moiety of CoA. Only the straight-chain C5 analog (3-oxo-propionyl-CoA) was found to be an alternative substrate (40%) for the reductase.  相似文献   

19.
The kinetics of electron transfer from the reduced [2Fe-2S] ferredoxins from the cyanobacterium Anabaena 7120 and the protozoan Trichomonas vaginalis to select cobalt coordination compounds have been studied in order to gain insight into the mechanism of electron transfer and intrinsic reactivity of [2Fe-2S] active sites. With tripositive cobalt complexes, reactions of both proteins displayed saturation kinetics; values of association constants of 12,900 and 1,400 M-1 and limiting rate constants of 7.6 and 3.5 s-1 were found for oxidation of T. vaginalis and Anabaena ferredoxins, respectively, by Co(NH3)6(3+) at room temperature and I = 0.1 M. An activation enthalpy of 12.1 kcal/mol and activation entropy of -14.3 cal/mol K for oxidation of T. vaginalis ferredoxin by Co(NH3)6(3+) contrasted with corresponding values of 13.4 kcal/mol and -10.5 cal/mol K for the Spirulina platensis protein, which is homologous to Anabaena ferredoxin. The dependence of the reaction rates on ionic strength were measured to probe the importance of electrostatics on the reactivity of the proteins. Analysis of the ionic strength dependence of the oxidation of the proteins by Co(NH3)6(3+) by the "parallel plate" model of Watkins et al. (1994, Protein Sci 3:2104-2114) afforded values for active site charges of -0.7 and -1.1 and limiting rate constants at infinite ionic strength of 25,800 and 76 M-1 S-1 for T. vaginalis and Anabaena ferredoxins, respectively. These results suggest that the [2Fe-2S] center of the protozoal ferredoxin is more accessible and adjacent to a less highly charged, more compact patch of negative charges than the photosynthetic protein.  相似文献   

20.
Transient kinetics of reduction of zucchini squash ascorbate oxidase (AO) by lumiflavin semiquinone have been studied by using laser flash photolysis. Second-order kinetics were obtained for reduction of the type I copper with a rate constant of 2.7 X 10(7) M-1 s-1, which is comparable to that obtained with other blue copper proteins such as plastocyanin. Following reduction, the type I copper was reoxidized in a protein concentration independent (i.e., intramolecular) reaction (kobs = 160 s-1). Comparison with literature values for limiting rate constants in transient single-turnover kinetic experiments suggests that intramolecular electron transfer probably is the rate-limiting step in enzyme catalysis. The extent of reoxidation of type I copper was approximately 55%, which is consistent with the approximately equal redox potentials of the type I and type III copper centers. Neither azide nor fluoride caused any significant changes in kinetics, although they are enzyme inhibitors and are thought to bind to the type II copper. In contrast, cyanide caused a concentration-dependent decrease in the extent of intramolecular electron transfer (with no change in rate constant), and decreased the rate constant for reduction of the type I copper by a factor of 2. The apparent dissociation constant for cyanide (0.2-0.4 mM) is similar to that reported for inhibition of enzyme activity. Removal of the type II copper from AO only marginally affected the kinetics of electron transfer to type I copper (k = 3.2 x 10(7) M-1 s-1) and slightly increased the extent but did not alter the rate constant of intramolecular electron transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号