共查询到20条相似文献,搜索用时 15 毫秒
1.
Araki T Tani S Maeda K Hashikawa S Nakagawa H Morishita T 《Bioscience, biotechnology, and biochemistry》1999,63(11):2017-2019
beta-1,3-Xylanase was purified to gel electrophoretic homogeneity and 83-fold from a cell-free culture fluid of Vibrio sp. XY-214 by ammonium sulfate precipitation and successive chromatographies. The enzyme had a pl of 3.6 and a molecular mass of 52 kDa. The enzyme had the highest level of activity at pH 7.0 and 37 degrees C. The enzyme activity was completely inhibited by Cu2+, Hg2+, and N-bromosuccinimide. The enzyme hydrolyzed beta-1,3-xylan to produce mainly xylotriose and xylobiose but did not act on xylobiose, p-nitrophenyl-beta-D-xyloside, beta-1,4-xylan, beta-1,3-glucan, or carboxymethyl cellulose. 相似文献
2.
3.
A beta-1,3-xylanase-producing bacterium, Alcaligenes sp. XY-234, was isolated from the marine environment. The organism produced endo-1,3-beta-xylanase at a high level in the culture fluid. The enzyme was purified 292-fold by ammonium sulfate precipitation and several column chromatographies. The final enzyme preparation appeared to be homogeneous on disc gel electrophoresis and SDS-PAGE with a molecular mass of 59 kDa, and the pI was 4.0. The enzyme hydrolyzed beta-1,3-xylan and larger xylooligosaccharides than xylobiose to give several xylooligosaccharides, but it could not hydrolyze xylobiose, p-nitrophenyl-beta-D-xyloside, and beta-1,4-xylan. The Km of the enzyme was 4.0 mg/ml. Optimal pH and temperature were 7.5 and 40 degrees C, respectively. It was stable from pH 6.0 to 10 and at a temperature of less than 40 degrees C. The enzyme was strongly inhibited by 1 mM HgCl(2)., AlCl(3), CuCl(2), FeCl(3), HgCl(2), Pb(CH(3)COO) (2), and N-bromosuccinimide. 相似文献
4.
Extracellular nuclease produced by a marine bacterium. II. Purification and properties of extracellular nuclease from a marine Vibrio sp. 总被引:4,自引:0,他引:4
Extracellular nuclease produced by a marine Vibrio sp., strain No. 2, was purified by salting out with ammonium sulfate and by chromatography on a DEAE-cellulose column and twice on a Sephadex G-200 column. The nuclease was eluted as a single peak in which the deoxyribonuclease (DNase) activity and ribonuclease (RNase) activity appeared together. Polyacrylamide disc gel electrophoresis showed a single band of stained protein which had both DNase and RNase activity. The molecular weight of the enzyme was estimated to be 100 000 daltons. When using partially purified enzyme from the DEAE-cellulose column, the optimum pH for activity was 8.0, and the enzyme was activated strongly by 0.05 M Mg2+ ions and stabilized by 0.01 M Ca2+ ion. These concentrations of Mg2+ and Ca2+ ions are similar to those of the two cations in seawater. Indeed, the enzyme revealed high activity and strong stability when kept in seawater. The presence of particulate matter, such as cellulose powder, chitin powder. Hyflosupercel, Kaolin, and marine mud increased the stability of the enzyme. When the hydrostatic pressure was increased from 1 to 1000 atmospheres, the decrements of the enzyme activity were more pronounced at 30 and 40 degrees C than at 25 or 50 degrees C. The enzyme activity was restored after decompression to 1 atm at 30 degrees C. 相似文献
5.
Zhou S.N. Yang C.Y. Lu Y.J. Huang L. Cai C.H. Lin Y.C. 《World journal of microbiology & biotechnology》1999,15(6):745-746
A chitinase was separated from the culture broth of Vibrio sp. 11211 isolated from sediment from the South China Sea. The chitinase was purified 18.3-fold with 33% recovery by ammonium sulphate precipitation and chromatography. The subunit molecular weight of the enzyme was estimated by SDS-PAGE to be about 30kDa. The enzyme showed optimum pH at 6.5 and optimum temperature at 50°C, and was stable in the pH range of 4 to 9 and at the temperature below 40°C. 相似文献
6.
The beta-1,3-xylosidase gene (xloA) of Vibrio sp. strain XY-214 was cloned and expressed in Escherichia coli. The xloA gene consisted of a 1,608-bp nucleotide sequence encoding a protein of 535 amino acids with a predicted molecular weight of 60,835. The recombinant beta-1,3-xylosidase hydrolyzed beta-1,3-xylooligosaccharides to D-xylose as a final product. 相似文献
7.
Purification and characterization of a novel enzyme, alpha-neoagarooligosaccharide hydrolase (alpha-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107. 下载免费PDF全文
A novel enzyme, alpha-neoagarooligosaccharide hydrolase (EC 3.2.1.-), which hydrolyzes the alpha-1,3 linkage of neoagarooligosaccharides to yield agaropentaose (O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-D-galactose], agarotriose [O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro- alpha-L-galactopyranosyl (1-->3)-D-galactose], agarobiose [O-beta-D-galactopyranosyl(1-->4)-3,6-anhydro-L-galactose], 3,6-anhydro-L-galactose, and D-galactose was isolated from the marine bacterium Vibrio sp. strain JT0107 and characterized. This enzyme was purified 383-fold from cultured cells by using a combination of ammonium sulfate precipitation, successive anion-exchange column chromatography, gel filtration, and hydroxyapatite chromatography, gel filtration, and hydroxyapatite chromatography. The purified protein gave a single band (M(r), 42,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the M(r) by the gel filtration method gave a value of 84,000, indicating that the enzyme is dimeric. Amino acid sequence analysis revealed it to have a single N-terminal sequence that has no sequence homology to any other known agarases. The optimum temperature and pH were 30 degrees C and 7.7, respectively. The Km and maximum rate of metabolism for neoagarobiose were 5.37 mM and 92 U/mg of protein, respectively. 相似文献
8.
Wang YH Yu GL Wang XM Lv ZH Zhao X Wu ZH Ji WS 《Acta biochimica et biophysica Sinica》2006,38(9):633-638
Extracellular alginate lyase secreted by marine Vibrio sp.YWA,isolated from decayedLaminaria japonica,was purified by a combination of ammonium sulfate precipitation and diethylaminoethyl-Sephacel column chromatography.The results show that the molecular mass of alginate lyase wasapproximately 62.5 kDa,with an optimal pH and temperature at pH 7.0 and 25℃,respectively.K_m wasapproximately 72.73 g/L.The activity of the enzyme was enhanced by EDTA and Zn~(2 ),but inhibited by Ba~(2 ).The substrates specificity analysis shows that it was specific for hydrolyzing poly-β-D-1,4-mannuronate inalginate. 相似文献
9.
Novel carbohydrate-binding module of beta-1,3-xylanase from a marine bacterium, Alcaligenes sp. strain XY-234 下载免费PDF全文
A beta-1,3-xylanase gene (txyA) from a marine bacterium, Alcaligenes sp. strain XY-234, has been cloned and sequenced. txyA consists of a 1,410-bp open reading frame that encodes 469 amino acid residues with a calculated molecular mass of 52,256 Da. The domain structure of the beta-1,3-xylanase (TxyA) consists of a signal peptide of 22 amino acid residues, followed by a catalytic domain which belongs to family 26 of the glycosyl hydrolases, a linker region with one array of DGG and six repeats of DNGG, and a novel carbohydrate-binding module (CBM) at the C terminus. The recombinant TxyA hydrolyzed beta-1,3-xylan but not other polysaccharides such as beta-1,4-xylan, carboxymethylcellulose, curdlan, glucomannan, or beta-1,4-mannan. TxyA was capable of binding specifically to beta-1,3-xylan. The analysis using truncated TxyA lacking either the N- or C-terminal region indicated that the region encoding the CBM was located between residues 376 and 469. Binding studies on the CBM revealed that the K(d) and the maximum amount of protein bound to beta-1,3-xylan were 4.2 microM and 18.2 micromol/g of beta-1,3-xylan, respectively. Furthermore, comparison of the enzymatic properties between proteins with and without the CBM strongly indicated that the CBM of TxyA plays an important role in the hydrolysis of beta-1,3-xylan. 相似文献
10.
The beta-agarase-d gene (agaD) from a marine bacterium, Vibrio sp. strain PO-303, was cloned and expressed in Escherichia coli. The gene consists of 1,362 bp and encodes a protein of 453 amino acids with a predicted molecular weight of 50,824. The full length of agarase-d consists of a signal peptide, a glycoside hydrolase family 16 catalytic module (CM), and a carbohydrate binding module (CBM). The full length of agarase-d without the signal peptide (rAgaDDeltafull), the catalytic module (rAgaDCM), or the CBM (rAgaDCBM) was expressed in E. coli as recombinant proteins. rAgaDCM exhibited higher enzyme activity (63.6 units/mg) than rAgaDDeltafull (1.20 units/mg) against agarose. rAgaDCM hydrolyzed agar and porphyran to several oligosaccharides and acted on neoagarohexaose to produce neoagarotetraose and neoagarobiose, but did not act on neoagarotetraose. rAgaDCBM bound to agarose. 相似文献
11.
E. Chalkiadakis R. Dufourcq S. Schmitt C. Brandily N. Kervarec D. Coatanea H. Amir L. Loubersac S. Chanteau J. Guezennec M. Dupont‐Rouzeyrol C. Simon‐Colin 《Journal of applied microbiology》2013,114(6):1702-1712
Aims
Exopolysaccharides (EPS) are industrially valuable molecules with numerous useful properties. This study describes the techniques used for the identification of a novel Vibrio bacterium and preliminary characterization of its EPS.Methods and Results
Bioprospection in marine intertidal areas of New Caledonia followed by screening for EPS producing brought to selection of the isolate NC470. Phylogenetic analysis (biochemical tests, gene sequencing and DNA–DNA relatedness) permitted to identify NC470 as a new member of the Vibrio genus. The EPS was produced in batch fermentation, purified using the ultrafiltration process and analysed by colorimetry, Fourier Transform Infrared spectroscopy, gas chromatography, Nuclear Magnetic Resonance and HPLC‐size exclusion chromatography. This EPS exhibits a high N‐acetyl‐hexosamines and uronic acid content with a low amount of neutral sugar. The molecular mass was 672 × 103 Da. These data are relevant for possible technological exploitation.Conclusions
We propose the name Vibrio neocaledonicus sp. nov for this isolate NC470, producing an EPS with an unusual sugar composition. Comparison with other known polymers permitted to select applications for this polymer.Significance and Impact of the Study
This study contributes to evaluate the marine biodiversity of New Caledonia. It also highlights the biotechnological potential of New Caledonia marine bacteria. 相似文献12.
Purification and characterization of a secreted protease from the pathogenic marine bacterium Vibrio anguillarum 总被引:6,自引:0,他引:6
Vibrio anguillarum is a pathogenic marine bacterium which causes the disease vibriosis in salmonid fish, which is characterized by a fatal hemorrhagic septicemia accompanied by massive tissue destruction. In this paper, the purification of the major caseinolytic extracellular protease from V. anguillarum is presented. The purification steps include ammonium sulfate precipitation, DEAE-Sepharose chromatography, Sephacryl S-200 chromatography, and DEAE high-pressure liquid chromatography. The purified protease migrates with Mr = 38,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A slightly larger protease of Mr 40,000 is also separated by this procedure, but accounts for only a minor fraction of the caseinolytic activity. The Mr 38,000 protease displays a broad pH activity profile in the neutral to basic range. It is not inhibited by serine, cysteine, or acid protease inhibitors, but is inhibited by EDTA and 1,10-phenanthroline, suggesting that it is a metalloprotease. The activity of the EDTA-inactivated protease could be partially restored by the addition of Ca2+ and Zn2+ together. The molecular weight and inhibition data show some similarities with proteases isolated from other Vibrio species such as Vibrio cholerae and Vibrio vulnificus. 相似文献
13.
Two isozymes of NADP+-specific isocitrate dehydrogenase [ICDH; EC 1.1.1.42] were confirmed to be present in an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1, on the basis of the temperature-activity curve and electrophoretic mobilities. These isozymes were separated and purified about 170-fold for isozyme I (specific activity at 40 degrees C, 24.3 units/mg protein) and about 180-fold for isozyme II (specific activity at 20 degrees C, 59.2 units/mg protein), though the isozymes were still not homogeneous. The molecular weights of these isozymes determined by gel filtration were both about 85,000, but the properties of the isozymes were considerably different from each other. The thermostability of isozyme I resembled those of mesophiles, but isozyme II was extremely labile above 20 degrees C. NaCl affected the ICDH isozymes in different ways; the salt protected isozyme I from heat inactivation, but not isozyme II. Nevertheless it enormously enhanced the activity of isozyme II at low concentrations. Moreover, these ICDH isozymes showed different pH optima, Km values for isocitrate, susceptibilities to concerted inhibition by glyoxylate plus oxalacetate, and effects of 2-mercaptoethanol on their stabilities. 相似文献
14.
The Vibrio sp. strain XY-214 beta-1,3-xylanase gene cloned in Escherichia coli DH5alpha consisted of an open reading frame of 1, 383 nucleotides encoding a protein of 460 amino acids with a molecular mass of 51,323 Da and had a signal peptide of 22 amino acids. The transformant enzyme hydrolyzed beta-1,3-xylan to produce several xylooligosaccharides. 相似文献
15.
Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides. 相似文献
16.
Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. 总被引:4,自引:0,他引:4 下载免费PDF全文
An agarase gene (agaA) was cloned from genomic DNA of Vibrio sp. strain JT0107. An open reading frame of 2,985 nucleotides gave a primary translation product composed of the mature protein, agarase 0107 (975 amino acid residues, with a molecular weight of 105,271) and a signal peptide of 20 amino acid residues at the N terminus. Comparison of the deduced amino acid sequence of agarase 0107 with those of Streptomyces coelicolor and Pseudomonas atlantica suggests that these enzymes share two regions in common. The AgaA protein which was expressed in Escherichia coli had the agarase activity. Agarase 0107 hydrolyzes not only agarose but also neoagarotetraose [O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galact opy ranosyl (1-->3)-D-galactose] to yield neoagarobiose [O-3,6-anhydro-alpha-L-galactopyranosyl(1-->3)-D-galactose]. This is a quite unique characteristic for a beta-agarase. 相似文献
17.
Masako Chou Takafumi Matsunaga Y. Takada Noriyuki Fukunaga 《Extremophiles : life under extreme conditions》1999,3(2):89-95
NH4
+ transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3
+) into the intact cells. 14CH3NH3
+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in
medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3
+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3
+ completely inhibited 14CH3NH3
+ uptake. These results indicate that 14CH3NH3
+ uptake in this bacterium is mediated via an NH4
+ transport system and not by a specific carrier for CH3NH3
+. The respiratory substrate succinate was required to drive 14CH3NH3
+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical
potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide
m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl
activated 14CH3NH3
+ uptake. The 14CH3NH3
+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K
m value for CH3NH3
+ of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4
+ transport system of this bacterium was highly active at low temperatures.
Received: August 1, 1998 / Accepted: October 8, 1998 相似文献
18.
Dong J Hashikawa S Konishi T Tamaru Y Araki T 《Applied and environmental microbiology》2006,72(9):6399-6401
The beta-agarase C gene (agaC) of a marine bacterium, Vibrio sp. strain PO-303, consisted of 1,437 bp encoding 478 amino acid residues. beta-Agarase C was identified as the first beta-agarase that cannot hydrolyze neoagarooctaose and smaller neoagarooligosaccharides and was assigned to a novel glycoside hydrolase family. 相似文献
19.
20.
Purification and characterization of an extracellular pectate lyase from an Amycolata sp. 总被引:4,自引:0,他引:4 下载免费PDF全文
F Brühlmann 《Applied microbiology》1995,61(10):3580-3585
The extracellular pectate lyase (EC 4.2.2.2) of a nonsporulating Amycolata sp. was purified to homogeneity by anion- and cation-exchange chromatographies followed by hydrophobic interaction chromatography. The enzyme cleaved polygalacturonate but not highly esterified pectin in a random endolytic transeliminative mechanism that led to the formation of a wide range of 4,5-unsaturated oligogalacturonates. As shown by high-performance anion-exchange chromatography and pulsed amperometric detection, these unsaturated oligogalacturonates were further depolymerized by the enzyme to the unsaturated dimer and trimer as final products. The pectate lyase had a molecular weight of 31,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a molecular mass of 30,000 Da determined by matrix-assisted laser desorption ionization mass spectrometry. The isoelectric point of the protein was 10. Maximum activity occurred at pH 10.25. Calcium was essential for activity, and EDTA inactivated the enzyme under standard assay conditions. Interestingly, EDTA did not inhibit the ability of the enzyme to cleave the native pectin (protopectin) of ramie (Boehmeria nivea) fibers. The Km value with sodium polygalacturonate as the substrate was 0.019 g liter-1. The purified enzyme lost its activity after a 1-h incubation at 50 degrees C but was stabilized by calcium or polygalacturonate. The N-terminal sequence showed high similarity within a stretch of 13 amino acids to the N-terminal sequences of pectate lyases PLa and PLe from Erwinia chrysanthemi. The Amycolata sp. did not produce additional isozymes of pectate lyase but produced further activities of pectinesterase, xylanase, and carboxymethyl cellulase when grown in a medium with decorticated bast fibers from ramie as the sole carbon source. 相似文献