首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have isolated three Shewanella oneidensis mutants specifically impaired in trimethylamine oxide (TMAO) respiration. The mutations arose from insertions of an ISSo2 element into torA, torR, and torS, encoding, respectively, the TMAO reductase TorA, the response regulator TorR, and the sensor TorS. Although TorA is not the sole enzyme reducing TMAO in S. oneidensis, growth analysis showed that it is the main respiratory TMAO reductase. Use of a plasmid-borne torE'-lacZ fusion confirmed that the TorS-TorR phosphorelay mediates TMAO induction of the torECAD operon.  相似文献   

3.
4.
5.
Price MS  Chao LY  Marletta MA 《Biochemistry》2007,46(48):13677-13683
Nitric oxide (NO) signaling in animals controls processes such as smooth muscle relaxation and neurotransmission by activation of soluble guanylate cyclase (sGC). Prokaryotic homologues of the sGC heme domain, called H-NOX domains, have been identified and are generally found in a predicted operon in conjunction with a histidine kinase. Here, we show that an H-NOX protein (SO2144) from Shewanella oneidensis directly interacts with the sensor histidine kinase (SO2145), binds NO in a 5-coordinate complex similar to mammalian sGC, and in that form inhibits the activity of a histidine kinase (SO2145). We also describe the first account of NO formation by S. oneidensis under anaerobic growth conditions derived from nitrate and nitrite. These observations suggest that the S. oneidensis H-NOX and histidine kinase pair function as part of a novel two-component signaling pathway that is responsive to NO formation from higher nitrogen oxides used as electron acceptors when oxygen is low and thereby functioning as an environmental sensor.  相似文献   

6.
7.
8.
We determined that graphene oxide reduction by Shewanella oneidensis MR-1 requires the Mtr respiratory pathway by analyzing a range of mutants lacking these proteins. Electron shuttling compounds increased the graphene oxide reduction rate 3- to 5-fold. These results may help facilitate the use of bacteria for large-scale graphene production.  相似文献   

9.
Shewanella oneidensis couples oxidation of lactate to respiration of many substrates. Here we report that llpR (l-lactate-positive regulator, SO_3460) encodes a positive regulator of l-lactate utilization distinct from previously studied regulators. We also demonstrate d-lactate inhibition of l-lactate utilization in S. oneidensis, resulting in preferential utilization of the d isomer.  相似文献   

10.
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.  相似文献   

11.
Selenite and Tellurite Reduction by Shewanella oneidensis   总被引:1,自引:0,他引:1  
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.  相似文献   

12.
As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation.  相似文献   

13.
14.
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.  相似文献   

15.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

16.
Biofilms, or surface-attached microbial communities, are both ubiquitous and resilient in the environment. Although much is known about how biofilms form, develop, and detach, very little is understood about how these events are related to metabolism and its dynamics. It is commonly thought that large subpopulations of cells within biofilms are not actively producing proteins or generating energy and are therefore dead. An alternative hypothesis is that within the growth-inactive domains of biofilms, significant populations of living cells persist and retain the capacity to dynamically regulate their metabolism. To test this, we employed unstable fluorescent reporters to measure growth activity and protein synthesis in vivo over the course of biofilm development and created a quantitative routine to compare domains of activity in independently grown biofilms. Here we report that Shewanella oneidensis biofilm structures reproducibly stratify with respect to growth activity and metabolism as a function of size. Within domains of growth-inactive cells, genes typically upregulated under anaerobic conditions are expressed well after growth has ceased. These findings reveal that, far from being dead, the majority of cells in mature S. oneidensis biofilms have actively turned-on metabolic programs appropriate to their local microenvironment and developmental stage.  相似文献   

17.
Spatiometabolic Stratification of Shewanella oneidensis Biofilms   总被引:1,自引:0,他引:1       下载免费PDF全文
Biofilms, or surface-attached microbial communities, are both ubiquitous and resilient in the environment. Although much is known about how biofilms form, develop, and detach, very little is understood about how these events are related to metabolism and its dynamics. It is commonly thought that large subpopulations of cells within biofilms are not actively producing proteins or generating energy and are therefore dead. An alternative hypothesis is that within the growth-inactive domains of biofilms, significant populations of living cells persist and retain the capacity to dynamically regulate their metabolism. To test this, we employed unstable fluorescent reporters to measure growth activity and protein synthesis in vivo over the course of biofilm development and created a quantitative routine to compare domains of activity in independently grown biofilms. Here we report that Shewanella oneidensis biofilm structures reproducibly stratify with respect to growth activity and metabolism as a function of size. Within domains of growth-inactive cells, genes typically upregulated under anaerobic conditions are expressed well after growth has ceased. These findings reveal that, far from being dead, the majority of cells in mature S. oneidensis biofilms have actively turned-on metabolic programs appropriate to their local microenvironment and developmental stage.  相似文献   

18.
Microbial reduction and precipitation of vanadium by Shewanella oneidensis   总被引:3,自引:0,他引:3  
Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (V(V)). The bacterium reduces V(V) (vanadate ion) to V(IV) (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a V(IV)-containing solid.  相似文献   

19.
Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid.  相似文献   

20.
Proteome alterations in the metal-reducing bacterium Shewanella oneidensis MR-1 in response to different acute dose challenges (0.3, 0.5, or 1 mM) of the toxic metal chromate [Cr(VI)] were characterized with multidimensional HPLC-MS/MS. Proteome measurements were performed and compared on both quadrupole ion traps as well as linear trapping quadrupole mass spectrometers. We have found that the implementation of multidimensional liquid chromatography on-line with the rapid scanning, high throughput linear trapping quadrupole platform resulted in a dramatic increase in the number of measured peptides and, thus, the number of identified proteins. A total of 2406 functionally diverse, nonredundant proteins were identified in this study, representing a relatively deep proteome coverage for this organism. The core molecular response to chromate challenge under all three concentrations consisted predominantly of proteins with annotated functions in transport and binding (e.g., components of the TonB1 iron transport system, TonB-dependent receptors, and sulfate transporters) as well as a functionally undefined DNA-binding response regulator (SO2426) that might play a role in mediating metal stress responses. In addition, proteins annotated as a cytochrome c, a putative azoreductase, and various proteins involved in general stress protection were up-regulated at the higher Cr(VI) doses (0.5 and 1 mM) only. Proteins down-regulated in response to metal treatment were distributed across diverse functional categories, with energy metabolism proteins dominating. The results presented in this work demonstrate the dynamic dosage response of S. oneidensis to sub-toxic levels of chromate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号