首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

2.
The substituted cysteine-accessibility method and two sulfhydryl-specific reagents, the methane-thiosulfonate derivative 2-aminoethyl methanethiosulfonate (MTSEA) and the alpha(2)-adrenergic receptor (alpha(2)-AR) agonist chloroethylclonidine (CEC), were used to determine the relative accessibility of engineered cysteines in the fifth transmembrane domain of the human alpha(2A)-AR (Halpha2A). The second-order rate constants for the reaction of the receptor with MTSEA and CEC were determined with the wild type Halpha2A (cysteine at position 201) and receptor mutants containing accessible cysteines at other positions within the binding-site crevice (positions 197, 200, and 204). The rate of reaction of CEC was similar to that of MTSEA at residues Cys-197, Cys-201, and Cys-204. The rate of reaction of CEC with Cys-200, however, was more than 5 times that of MTSEA, suggesting that these compounds may interact with two different receptor conformations. MTSEA, having no recognition specificity for the receptor, likely reacts with the predominant inactive receptor conformation (R), whereas the agonist CEC may stabilize and react preferentially with the active receptor conformation (R*). This hypothesis was consistent with three-dimensional receptor-ligand models, which further suggest that alpha(2A)-AR activation may involve the clockwise rotation of transmembrane domain 5.  相似文献   

3.
The contribution of transmembrane regions I, II, and III of the Rickettsia prowazekii ATP/ADP translocase to the structure of the putative water-filled ATP translocation channel was evaluated from the accessibility of hydrophilic, thiol-reactive, methanethiosulfonate reagents to a library of 68 independent cysteine-substitution mutants heterologously expressed in Escherichia coli. The MTS reagents used were MTSES (negatively charged) and MTSET and MTSEA (both positively charged). Mutants F036C, Y042C, and R046C (TM I), K066C and P072C (TM II), and F101C, F105C, F108C, Y113C, and P114C (TM III) had no assayable transport activity, indicating that cysteine substitution at these positions may not be tolerated. All three MTS reagents inhibit the transport of ATP in mutants of TM I (L039C, S043C, S047C, I048C) and TM II (S061C, S063C, T067C, I069C, V070C, A074C). Further, these residues appear to cluster along a single face of the transmembrane domain. Preexposure of MTS-reactive mutants S047C (TM I) and T067C (TM II) to high levels of ATP resulted in protection from MTS-mediated inhibition. This indicated that both TM I and TM II make major contributions to the structure of an aqueous ATP translocation pathway. Finally, on the basis of the lack of accessibility of charged MTS reagents to the thiol groups in mutants of TM III, it appears that TM III is not exposed to the ATP translocation channel. Cysteine substitution of residues constituting a highly conserved "phenylalanine face" in TM III resulted in ablation of ATP transport activity. Further, substituting these phenylalanine residues for either isoleucine or tyrosine also resulted in much lower transport activity, indicating that some property of phenylalanine at these positions that is not shared by cysteine, isoleucine, or tyrosine is critical to translocase activity.  相似文献   

4.
Twenty-two amino acid residues from transmembrane domain 3 of the creatine transporter were replaced, one at a time, with cysteine. The background for mutagenesis was a C144S mutant retaining approximately 75% of wild-type transport activity but resistant to methanethiosulfonate (MTS) reagents. Each substitution mutant was tested for creatine transport activity and sensitivity to the following MTS reagents: 2-aminoethyl methanethiosulfonate (MTSEA), 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and 2-sulfonatoethyl methanethiosulfonate (MTSES). Two mutants (G134C and Y148C) were inactive, but most mutants showed significant levels of creatine transport. Treatment with MTSEA inhibited the activity of the W154C, Y147C, and I140C mutants. Creatine partially protected I140C from inactivation, and this residue, like Cys-144 in the wild-type CreaT, is predicted to be close to a creatine binding site. MTSEA inactivation of Y147C was dependent on Na+ and Cl- suggesting that solvent accessibility was ion-dependent. Helical wheel and helical net projections indicate that the three MTSEA-sensitive mutants (W154C, Y147C, and I140C) and two inactive mutants (V151C and Y148C) are aligned on a face of an alpha-helix, suggesting that they form part of a substrate pathway. The W154C mutant, located near the external face of the membrane, was accessible to the larger MTS reagents, whereas those implicated in creatine binding were only accessible to the smaller MTSEA. Consideration of our data, together with a study on the serotonin transporter (Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) J. Biol. Chem. 272, 28321-28327), suggests that involvement of residues from transmembrane domain 3 is a common feature of the substrate pathway of Na+- and Cl- -dependent neurotransmitter transporters.  相似文献   

5.
Glutamate transporters in the brain remove the neurotransmitter from the synapse by cotransport with three sodium ions into the surrounding cells. Recent structural work on an archaeal homolog suggests that, during substrate translocation, the transport domain, including the peripheral transmembrane helix 3 (TM3), moves relative to the trimerization domain in an elevator-like process. Moreover, two TM3 residues have been proposed to form part of a transient Na3′ site, and another, Tyr-124, appears close to both Na3′ and Na1. To obtain independent evidence for the role of TM3 in glutamate transport, each of its 31 amino acid residues from the glial GLT-1 transporter was individually mutated to cysteine. Except for six mutants, substantial transport activity was detected. Aqueous accessibility of the introduced cysteines was probed with membrane-permeant and membrane-impermeant sulfhydryl reagents under a variety of conditions. Transport of six single cysteine mutants, all located on the intracellular side of TM3, was affected by membrane-permeant sulfhydryl reagents. However, only at two positions could ligands modulate the reactivity. A120C reactivity was diminished under conditions expected to favor the outward-facing conformation of the transporter. Sulfhydryl modification of Y124C by 2-aminoethyl methanethiosulfonate, but not by N-ethylmaleimide, was fully protected in the presence of sodium. Our data are consistent with the idea that TM3 moves during transport. Moreover, computational modeling indicated that electrostatic repulsion between the positive charge introduced at position 124 and the sodium ions bound at Na3′ and Na1 underlies the protection by sodium.  相似文献   

6.
Role of cysteine residues in the lac permease of Escherichia coli   总被引:3,自引:0,他引:3  
Oligonucleotide-directed, site-specific mutagenesis has been utilized to replace cysteine residues 117, 333, or 353 and 355 with serine in the lac permease of Escherichia coli. Replacement of Cys-117 or Cys-333 has no significant effect on permease activity, while permease with serine residues in place of Cys-353 and Cys-355 has about 50% of wild-type permease activity. The results provide a clear demonstration that cysteine residues at positions 117, 333, 353, and 355 are not obligatory for lactose/H+ symport. When considered in conjunction with previous findings, the results indicate that, of the eight cysteine residues in the lac permease, only Cys-154 is important for lactose transport. As discussed, the conclusion has important implications for the hypothesis that sulfhydryl-disulfide interconversion plays an important role in the symport mechanism.  相似文献   

7.
SNAT4 is a system A type amino acid transporter that primarily expresses in liver and mediates the transport of L-alanine. To determine the critical amino acid residue(s) involved in substrate transport function of SNAT4, we used hydrosulfate cross-linking MTS reagents - MMTS and MTSEA. These two reagents caused inhibition of L-alanine transport by wild-type SNAT4. There are 5 cysteine residues in SNAT4 and among them; residues Cys-232 and Cys-345 are located in the transmembrane domains. Mutation of Cys-232, but not Cys-345, inhibited transport function of SNAT4 and also rendered SNAT4 less sensitive to the cross-linking by MMTS and MTSEA. The results suggested that TMD located Cys-232 is an aqueous accessible residue, likely to be located close to the core of substrate binding site. Mutation of Cys-232 to serine similarly attenuated the transport of L-alanine substrate. Biotinylation analysis showed that C232A mutant of SNAT4 was equally capable as wild-type SNAT4 of expressing on the cell surface. Moreover, single site mutant, C232A was also found to be more resistant to MTS inhibition than double mutant C18A,C345A, further confirming the aqueous accessibility of Cys-232 residue. We also showed that mutation of Cys-232 to alanine reduced the maximal velocity (Vmax), but had minimal effect on binding affinity (Km). Together, these data suggest that residue Cys-232 at 4th transmembrane domain of SNAT4 has a major influence on substrate transport capacity, but not on substrate binding affinity.  相似文献   

8.
Mutations at critical residue positions in transmembrane span 7 (TM7) of the serotonin transporter affect the Na(+) dependence of transport. It was possible that these residues, which form a stripe along one side of the predicted alpha-helix, formed part of a water-filled pore for Na(+). We tested whether cysteine substitutions in TM7 were accessible to hydrophilic, membrane-impermeant methanethiosulfonate (MTS) reagents. Although all five cysteine-containing mutants tested were sensitive to these reagents, noncysteine control mutants at the same positions were in most cases equally sensitive. In all cases, MTS sensitivity could be traced to changes in accessibility of a native cysteine residue in extracellular loop 1, Cys-109. Moreover, none of the TM7 cysteines reacted with the biotinylating reagent MTSEA-biotin when tested in the C109A background. It is thus unlikely that the critical stripe forms part of a water-filled pore. Instead, studies of the ion dependence of the reaction between Cys-109 and MTS reagents lead to the conclusion that TM7 is involved in propagating conformational changes caused by ion binding, perhaps as part of the translocation mechanism. The critical stripe residues on TM7 probably represent a close contact region between TM7 and one or more other TMs in the transporter's three-dimensional structure.  相似文献   

9.
To explore aqueous accessibility and functional contributions of transmembrane domain (TM) 1 in human serotonin transporter (hSERT) proteins, we utilized the largely methanethiosulfonate (MTS) insensitive hSERT C109A mutant and mutated individual residues of hSERT TM1 to Cys followed by tests of MTS inactivation of 5-hydroxytryptamine (5-HT) transport. Residues in TM1 cytoplasmic to Gly-94 were largely unaffected by Cys substitution, whereas the mutation of residues extracellular to Ile-93 variably diminished transport activity. TM1 Cys substitutions displayed differential sensitivity to MTS reagents, with residues more cytoplasmic to Asp-98 being largely insensitive to MTS inactivation. Aminoethylmethanethiosulfonate (MTSEA), [2-(trimethylammonium) ethyl]methanethiosulfonate bromide (MTSET), and sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) similarly and profoundly inactivated 5-HT transport by SERT mutants D98C, G100C, W103C, and Y107C. MTSEA uniquely inactivated transport activity of S91C, G94C, Y95C but increased activity at I108C. MTSEA and MTSET, but not MTSES, inactivated transport function at N101C. Notably, 5-HT provided partial to complete protection from MTSET inactivation for D98C, G100C, N101C, and Y107C. Equivalent blockade of MTSET inactivation at N101C was observed with 5-HT at both room temperature and at 4 degrees C, inconsistent with major conformational changes leading to protection. Notably, cocaine also protected MTSET inactivation of G100C and N101C, although MTS incubations with N101C that eliminate 5-HT transport do not preclude cocaine analog binding nor its inhibition by 5-HT. 5-HT modestly enhanced the inactivation by MTSET at I93C and Y95C, whereas cocaine significantly enhanced MTSET sensitivity at Y107C and I108C. In summary, our studies reveal physical differences in TM1 accessibility to externally applied MTS reagents and reveal sites supporting substrate and antagonist modulation of MTS inactivation. Moreover, we identify a limit to accessibility for membrane-impermeant MTS reagents that may reflect aspects of an occluded permeation pathway.  相似文献   

10.
Phenoxybenzamine (PB), a classical alpha-adrenergic antagonist, binds irreversibly to the alpha-adrenergic receptors (ARs). Amino acid sequence alignments and the predicted helical arrangement of the seven transmembrane (TM) domains suggested an accessible cysteine residue in transmembrane 3 of the alpha(2)-ARs, in position C(3.36) (in subtypes A, B, and C corresponding to amino acid residue numbers 117/96/135, respectively), as a possible site for the PB interaction. Irreversible binding of PB to recombinant human alpha(2)-ARs (90 nm, 30 min) reduced the ligand binding capacity of alpha(2A)-, alpha(2B)-, and alpha(2C)-AR by 81, 96, and 77%. When the TM3 cysteine, Cys(117), of alpha(2A)-AR was mutated to valine (alpha(2A)-C117V), the receptor became resistant to PB (inactivation, 10%). The beta(2)-AR contains a valine in this position (V(3.36); position number 117) and a cysteine in the preceding position (Cys(116)) and was not inactivated by PB (10 microm, 30 min) (inactivation 26%). The helical orientation of TM3 was tested by exchanging the amino acids at positions 116 and 117 of the alpha(2A)-AR and beta(2)-AR. The alpha(2A)-F116C/C117V mutant was resistant to PB (inactivation, 7%), whereas beta(2)-V117C was irreversibly inactivated (inactivation, 93%), confirming that position 3.36 is exposed to receptor ligands, and position 3.35 is not exposed in the binding pocket.  相似文献   

11.
Shuck K  Lamb RA  Pinto LH 《Journal of virology》2000,74(17):7755-7761
The M(2) ion channel of influenza A virus is a small integral membrane protein whose active form is a homotetramer with each polypeptide chain containing 96-amino-acid residues. To identify residues of the transmembrane (TM) domain that line the presumed central ion-conducting pore, a set of mutants was generated in which each residue of the TM domain (residues 25 to 44) was replaced by cysteine. The accessibility of the cysteine mutants to modification by the sulfhydryl-specific reagents methane thiosulfonate ethylammonium (MTSEA) and MTS tetraethylammonium (MTSET) was tested. Extracellular application of MTSEA evoked decreases in the conductances measured from two mutants, M(2)-A30C and M(2)-G34C. The changes observed were not reversible on washout, indicative of a covalent modification. Inhibition by MTSEA, or by the larger reagent MTSET, was not detected for residues closer to the extracellular end of the channel than Ala-30, indicating the pore may be wider near the extracellular opening. To investigate the accessibility of the cysteine mutants to reagents applied intracellularly, oocytes were microinjected directly with reagents during recordings. The conductance of the M(2)-W41C mutant was decreased by intracellular injection of a concentrated MTSET solution. However, intracellular application of MTSET caused no change in the conductance of the M(2)-G34C mutant, a result in contrast to that obtained when the reagent was applied extracellularly. These data suggest that a constriction in the pore exists between residues 34 and 41 which prevents passage of the MTS reagent. These findings are consistent with the proposed role for His-37 as the selectivity filter. Taken together, these data confirm our earlier model that Ala-30, Gly-34, His-37, and Trp-41 line the channel pore (L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, and W. F. DeGrado, Proc. Natl. Acad. Sci. USA 94:11301-11306, 1997).  相似文献   

12.
The sodium- and chloride-coupled gamma-aminobutyric acid (GABA) transporter GAT-1 is essential for efficient synaptic transmission by this neurotransmitter. GAT-1 is the first cloned member of the neurotransmitter-sodium-symporter family. Here we address the idea that during transport the extracellular halves of transmembrane domains (TM) 1 and 6, TM 1b/TM 6a, move relative to the binding pocket. Therefore, we have probed the aqueous accessibility of TM 6a and its proximity to TM 1b in the presence and absence of its substrates. Cysteines were introduced, one by one, at all TM 6a positions. In several mutants, transport activity was inhibited by the impermeant sulfhydryl reagent (2-trimethylammonium)methanethiosulfonate, whereas wild type GAT-1 was basically insensitive. This inhibition was potentiated by sodium, whereas GABA was protective. Moreover, we used paired cysteine mutagenesis in conjunction with treatments with copper(II)(1,10-phenanthroline)(3) (CuPh). CuPh did not affect the activity of wild type GAT-1 but potently inhibited transport by the TM 6a mutant D287C. Such inhibition was not observed with D287C/C74A, indicating that Asp-287 is close to Cys-74 of TM 1b. Inhibition of transport of D287C by CuPh, but not by (2-trimethylammonium)methanethiosulfonate, was potentiated when sodium and GABA were both removed. Thus, the degree of inhibition by CuPh is not a simple function of the accessibility of the individual cysteines but also involves structural rearrangements around the TM 1b/TM 6a interface.  相似文献   

13.
Ou WB  Yi T  Kim JM  Khorana HG 《PloS one》2011,6(2):e17398

Background

Rhodopsin, the prototypic member of G protein-coupled receptors (GPCRs), undergoes isomerization of 11-cis-retinal to all-trans-retinal upon photoactivation. Although the basic mechanism by which rhodopsin is activated is well understood, the roles of whole transmembrane (TM) helix-III during rhodopsin photoactivation in detail are not completely clear.

Principal Findings

We herein use single-cysteine mutagenesis technique to investigate conformational changes in TM helices of rhodopsin upon photoactivation. Specifically, we study changes in accessibility and reactivity of cysteine residues introduced into the TM helix-III of rhodopsin. Twenty-eight single-cysteine mutants of rhodopsin (P107C-R135C) were prepared after substitution of all natural cysteine residues (C140/C167/C185/C222/C264/C316) by alanine. The cysteine mutants were expressed in COS-1 cells and rhodopsin was purified after regeneration with 11-cis-retinal. Cysteine accessibility in these mutants was monitored by reaction with 4, 4′-dithiodipyridine (4-PDS) in the dark and after illumination. Most of the mutants except for T108C, G109C, E113C, I133C, and R135C showed no reaction in the dark. Wide variation in reactivity was observed among cysteines at different positions in the sequence 108–135 after photoactivation. In particular, cysteines at position 115, 119, 121, 129, 131, 132, and 135, facing 11-cis-retinal, reacted with 4-PDS faster than neighboring amino acids. The different reaction rates of mutants with 4-PDS after photoactivation suggest that the amino acids in different positions in helix-III are exposed to aqueous environment to varying degrees.

Significance

Accessibility data indicate that an aqueous/hydrophobic boundary in helix-III is near G109 and I133. The lack of reactivity in the dark and the accessibility of cysteine after photoactivation indicate an increase of water/4-PDS accessibility for certain cysteine-mutants at Helix-III during formation of Meta II. We conclude that photoactivation resulted in water-accessible at the chromophore-facing residues of Helix-III.  相似文献   

14.
Khantwal CM  Swaan PW 《Biochemistry》2008,47(12):3606-3614
We report the involvement of transmembrane domain 4 (TM4) of hASBT in forming the putative translocation pathway, using cysteine-scanning mutagenesis in conjunction with solvent-accessibility studies using the membrane-impermeant, sulfhydryl-specific methanethiosulfonate reagents. We individually mutated each of the 21 amino acids in TM4 to cysteine on a fully functional, MTS-resistant C270A-hASBT template. The single-cysteine mutants were expressed in COS-1 cells, and their cell surface expression levels, transport activities [uptake of the prototypical hASBT substrate taurocholic acid (TCA)], and sensitivities to MTS exposure were determined. Only P161 lacked cell-surface expression. Overall, cysteine replacement was tolerated at charged and polar residues, except for mutants I160C, Y162C, I165C, and G179C (相似文献   

15.
Considerable evidence indicates the second transmembrane domain (TM2) of the gamma-aminobutyric acid (GABA) receptor lines the integral ion pore. To further delineate the structures that constitute the ion pore and selectivity filter of the rho1 GABA receptor, we used the substituted cysteine accessibility method with charged reagents to identify anion- and cation-accessible surfaces. Twenty-one consecutive residues were mutated to cysteine, one at a time, in the presumed intracellular end of the first transmembrane domain (TM1; Ala(271)-Met(276)), the entire linker connecting TM1 to TM2 (Leu(277)-Arg(287)), and the presumed intracellular end of TM2 (Ala(288)-Ala(291)). Positively (MTSEA(+)) and negatively (pCMBS(-)) charged sulfhydryl reagents, as well as Cd(2+), were added extracellularly to test accessibility of the engineered cysteines. Four of the mutants, all at the intracellular end of TM2 (R287C, V289C, P290C, A291C), were accessible to positively charged reagents, whereas seven mutants (A271C, T272C, L277C, W279C, V280C, P290C, A291C) were functionally modified by negatively charged pCMBS(-). These seven modified residues were at the intracellular end of TM2, in the TM1-TM2 linker, and at the intracellular end of TM1. In nearly all cases (excluding P290C), the rate and the degree of modification were state-dependent, with greater accessibility in the presence of agonist. Select cysteine mutants were combined with a point mutation (A291E) that converted the pore from chloride- to non-selective. In this case, positively charged reagents could modify residues in the TM1-TM2 linker (Leu(277) and Val(280)), supporting the notion that the modifying reagents were reaching their target through the pore. Taken together, our results suggest that, up to its intracellular end, the TM2 domain is not charge selective. In addition, we propose that the TM1-TM2 linker and the intracellular end of TM1 are along the pathway of the permeating ion. These findings may lend new insights into the structure of the GABA receptor pore.  相似文献   

16.
Zhang X  Qu S 《PloS one》2012,7(1):e30961

Background

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM) 5 of the EAAT1 are not clear yet.

Methodology/Principal Findings

We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. Vmax of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA.

Conclusions/Significance

All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.  相似文献   

17.
Activation of G protein-coupled receptors by agonists involves significant movement of transmembrane domains (TM) following binding of agonist. The underlying structural mechanism by which receptor activation takes place is largely unknown but can be inferred by detecting variability within the environment of the ligand-binding pocket, which constitutes a water-accessible crevice surrounded by the seven TM helices. Using the substituted cysteine accessibility method, we initially identified those residues within the seventh transmembrane domain (TM7) of wild type angiotensin II type 1 (AT1) receptor that contribute to forming the binding site pocket. We have substituted successively TM7 residues ranging from Ile276 to Tyr302 to cysteine. Treatment of A277C, V280C, T282C, A283C, I286C, A291C, and F301C mutant receptors with the charged sulfhydryl-specific alkylating agent MTSEA significantly inhibited ligand binding, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was greatly reduced for TM7 reporter cysteines engineered in a constitutively active mutant of the AT1 receptor. Our data suggest that upon activation, TM7 of the AT1 receptor goes through a pattern of helical movements that results in its distancing from the binding pocket per se. These studies support accumulating evidence whereby elements of TM7 of class A GPCRs promote activation of the receptor through structural rearrangements.  相似文献   

18.
Zhang X  Qu S 《PloS one》2011,6(6):e21288

Background

GLT-1 is a glial glutamate transporter which maintains low synaptic concentrations of the excitatory neurotransmitter enabling efficient synaptic transmission. Based on the crystal structure of the bacterial homologue GltPh, it has been proposed that the reentrant loop HP2, which connects transmembrane domains (TM) 7 and 8, moves to open and close access to the binding pocket from the extracellular medium. However the conformation change between TM5 and TM8 during the transport cycle is not clear yet. We used paired cysteine mutagenesis in conjunction with treatments with Copper(II)(1,10-Phenanthroline)3 (CuPh), to verify the predicted proximity of residues located at these structural elements of GLT-1.

Methodology/Principal Findings

To assess the proximity of transmembrane domain (TM) 5 relative to TM8 during transport by the glial glutamate transporter GLT-1/EAAT2, cysteine pairs were introduced at the extracellular ends of these structural elements. A complete inhibition of transport by Copper(II)(1,10-Phenanthroline)3 is observed in the double mutants I295C/I463C and G297C/I463C, but not in the corresponding single mutants. Glutamate and potassium, both expected to increase the proportion of inward-facing transporters, significantly protected against the inhibition of transport activity of I295C/I463C and G297C/I463C by CuPh. Transport by the double mutants I295C/I463C and G297C/I463C also was inhibited by Cd2+.

Conclusions/Significance

Our results suggest that TM5 (Ile-295, Gly-297) is in close proximity to TM8 (Ile-463) in the mammalian transporter, and that the spatial relationship between these domains is altered during the transport cycle.  相似文献   

19.
Formation of intramolecular disulfide bonds is a key step in the early maturation of newly synthesized Mr 46,000 mannose 6-phosphate receptors to acquire ligand-binding activity (Hille, A., Waheed, A., and von Figura, K. (1990) J. Cell Biol. 110, 963-972). The luminal domain of the receptor, which carries the ligand-binding site, contains 6 cysteine residues. We have analyzed the function of individual cysteine residues for the ligand-binding conformation by exchanging cysteine for glycine. In each case, the replacement of cysteine resulted in a complete loss of binding activity, indicating that all 6 luminal cysteine residues are required for the ligand-binding conformation. The cysteine mutants displayed a greatly reduced immunoreactivity, decreased stability, and a blocked or delayed transport to the trans Golgi. The glycosylation pattern allowed the distinguishing of three phenotypes, each of which was represented by one pair of cysteine mutants. Based on the assumption that replacement of either of the 2 cysteine residues forming a disulfide bond results in an identical phenotype, we postulate that disulfide bonds are formed between Cys-32 and Cys-78 and between Cys-132 and Cys-167, as well as between Cys-145 and Cys-179. This assumption was supported by the observation that the simultaneous exchange of the 2 cysteine residues of a putative pair resulted in the same phenotypes as the single exchange of either of the 2 cysteine residues.  相似文献   

20.
Organic cation transporters are membrane potential-dependent facilitative diffusion systems. Functional studies, extensive mutagenesis, and homology modeling indicate the following mechanism. A transporter conformation with a large outward-open cleft binds extracellular substrate, passes a state in which the substrate is occluded, turns to a conformation with an inward-open cleft, releases substrate, and subsequently turns back to the outward-open state. In the rat organic cation transporter (rOct1), voltage- and ligand-dependent movements of fluorescence-labeled cysteines were measured by voltage clamp fluorometry. For fluorescence detection, cysteine residues were introduced in extracellular parts of cleft-forming transmembrane α-helices (TMHs) 5, 8, and 11. Following expression of the mutants in Xenopus laevis oocytes, cysteines were labeled with tetramethylrhodamine-6-maleimide, and voltage-dependent conformational changes were monitored by voltage clamp fluorometry. One cysteine was introduced in the central domain of TMH 11 replacing glycine 478. This domain contains two amino acids that are involved in substrate binding and two glycine residues (Gly-477 and Gly-478) allowing for helix bending. Cys-478 could be modified with the transported substrate analog [2-(trimethylammonium)-ethyl]methanethiosulfonate but was inaccessible to tetramethylrhodamine-6-maleimide. Voltage-dependent movements at the indicator positions of TMHs 5, 8, and 11 were altered by substrate applications indicating large conformational changes during transport. The G478C exchange decreased transporter turnover and blocked voltage-dependent movements of TMHs 5 and 11. [2-(Trimethylammonium)-ethyl]methanethiosulfonate modification of Cys-478 blocked substrate binding, transport activity, and movement of TMH 8. The data suggest that Gly-478 is located within a mechanistically important hinge domain of TMH 11 in which substrate binding induces transport-related structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号