首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Section Arachis of the homonymous genus includes 29 wild diploid species and two allotetraploids (A. monticola and the domesticated peanut, A. hypogaea L.). Although, three different genomes (A, B and D) have been proposed for diploid species with = 10, they are still not well characterized. Moreover, neither the relationships among species within each genome group nor between diploids and tetraploids (AABB) are completely resolved. To tackle these issues, particularly within the A genome, in this study the rRNA genes (5S and 18S–26S) and heterochromatic bands were physically mapped using fluorescent in situ hybridization (FISH) in 13 species of Arachis. These molecular cytogenetic landmarks have allowed individual identification of a set of chromosomes and were used to construct detailed FISH-based karyotypes for each species. The bulk of the chromosome markers mapped revealed that, although the A genome species have a common karyotype structure, the species can be arranged in three groups (La Plata River Basin, Chiquitano, and Pantanal) on the basis of the variability observed in the heterochromatin and 18S–26S rRNA loci. Notably, these groups are consistent with the geographical co-distribution of the species. This coincidence is discussed on the basis of the particular reproductive traits of the species such as autogamy and geocarpy. Combined with geographic distribution of the taxa, the cytogenetic data provide evidence that A. duranensis is the most probable A genome ancestor of tetraploid species. It is expected that the groups of diploid species established, and their relation with the cultigen, may aid to rationally select wild species with agronomic traits desirable for peanut breeding programs.  相似文献   

2.
Twenty-six accessions of wildArachis species and domesticated peanuts,A. hypogaea, introduced from South America were analyzed for random amplified polymorphic DNA (RAPD). The objective of the study was to investigate inter- and intraspecific variation and affinities among species of sect.Arachis which have been proposed as possible progenitors for the domesticated peanut. Ten primers resolved 132 DNA bands which were useful for separating species and accessions. The most variation was observed among accessions ofA. cardenasii andA. glandulifera whereas the least amount of variation was observed inA. hypogaea andA. monticola. The two tetraploid species could not be separated by using RAPDs.Arachis duranensis was most closely related to the domesticated peanut and is believed to be the donor of the A genome. The data indicated thatA. batizocoi, a species previously hypothesized to contribute the B genome toA. hypogaea, was not involved in its evolution. The investigation showed that RAPDs can be used to analyze both inter- and intraspecific variation in peanut species. Southern hybridization of RAPD probes to blots containing RAPD of theArachis species provided information on genomic relationships and revealed the repetitive nature of the amplified DNA.  相似文献   

3.
Section Arachis is the largest of nine sections in the genus Arachis and includes domesticated peanut, A. hypogaea L. Most species are diploids (x=10) with two tetraploids and a few aneuploids. Three genome types have been recognized in this section (A, B and D), but the genomes are not well characterized and relationships of several newly described species are uncertain. To clarify genomic relationships in section Arachis, cytogenetic information and molecular data from amplified fragment length polymorphism (AFLP) and the trnT-F plastid region were used to provide an additional insight into genome composition and species relationships. Cytogenetic information supports earlier observations on genome types of A. cruziana, A. herzogii, A. kempff-mercadoi and A. kuhlmannii but was inconclusive about the genome composition of A. benensis, A. hoehnei, A. ipaensis, A. palustris, A. praecox and A. williamsii. An AFLP dendrogram resolved species into four major clusters and showed A. hypogaea grouping closely with A. ipaensis and A. williamsii. Sequence data of the trnT-F region provided genome-specific information and showed for the first time that the B and D genomes are more closely related to each other than to the A genome. Integration of information from cytogenetics and biparentally and maternally inherited genomic regions show promise in understanding genome types and relationships in Arachis.  相似文献   

4.
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.  相似文献   

5.

Background  

The genus Arachis is native to a region that includes Central Brazil and neighboring countries. Little is known about the genetic variability of the Brazilian cultivated peanut (Arachis hypogaea, genome AABB) germplasm collection at the DNA level. The understanding of the genetic diversity of cultivated and wild species of peanut (Arachis spp.) is essential to develop strategies of collection, conservation and use of the germplasm in variety development. The identity of the ancestor progenitor species of cultivated peanut has also been of great interest. Several species have been suggested as putative AA and BB genome donors to allotetraploid A. hypogaea. Microsatellite or SSR (Simple Sequence Repeat) markers are co-dominant, multiallelic, and highly polymorphic genetic markers, appropriate for genetic diversity studies. Microsatellite markers may also, to some extent, support phylogenetic inferences. Here we report the use of a set of microsatellite markers, including newly developed ones, for phylogenetic inferences and the analysis of genetic variation of accessions of A. hypogea and its wild relatives.  相似文献   

6.

Background  

The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species.  相似文献   

7.
8.
The genus Arachis contains a large number of species and undescribed taxa with patterns of genetic variation that are little understood. The objectives of this investigation were to estimate genetic diversity among species of Arachis by utilizing electrophoretic techniques and to establish the potential for use of isozymes as markers for germplasm introgression. One-hundred-and-thirteen accessions representing six of the seven sections of the genus were analyzed for isozyme variation of 17 enzymes. Section Rhizomatosae species were not included because they produce very few seeds. Seeds were macerated and the crude extract was used for starch-gel electrophoretic analyses. Although the cultivated species has few polymorphic isozymes, the diploid species are highly variable and two-to-six bands were observed for each isozyme among accessions. Because of the large number of isozyme differences between A. hypogaea and A. batizocoi (the presumed donor of the B genome), this species can no longer be considered as a progenitor of the cultivated peanut. Seed-to-seed polymorphisms within many accessions were also observed which indicate that germplasm should be maintained as bulk seed lots, representative of many individuals, or as lines from individual plants from original field collections. The area of greatest interspecific genetic diversity was in Mato Grosso, Brazil; however, the probability of finding unique alleles from those observed in A. hypogaea was greatest in north, north-central, south and southeast Brazil. The large number of polymorphic loci should be useful as genetic markers for interspecific hybridization studies.  相似文献   

9.
A recent approach to detecting genetic polymorphism involves the amplification of genomic DNA using single primers of arbitrary sequence. When separated electrophoretically in agarose gels, the amplification products give banding patterns that can be scored for genetic variation. The objective of this research was to apply these techniques to cultivated peanut (Arachis hypogaea L.) and related wild species to determine whether such an approach would be feasible for the construction of a genetic linkage map in peanut or for systematic studies of the genus. Two peanut cultivars, 25 unadapted germplasm lines of A. hypogaea, the wild allotetraploid progenitor of cultivated peanut (A. monticola), A. glabrata (a tetraploid species from section Rhizomatosae), and 29 diploid wild species of Arachis were evaluated for variability using primers of arbitrary sequence to amplify segments of genomic DNA. No variation in banding pattern was observed among the cultivars and germplasm lines of A. hypogaea, whereas the wild Arachis species were uniquely identified with most primers tested. Bands were scored (+/–) in the wild species and the PAUP computer program for phylogenetic analysis and the HyperRFLP program for genetic distance analysis were used to generate dendrograms showing genetic relationships among the diploid Arachis species evaluated. The two analyses produced nearly identical dendrograms of species relationships. In addition, approximately 100 F2 progeny from each of two interspecific crosses were evaluated for segregation of banding patterns. Although normal segregation was observed among the F2 progeny from both crosses, banding patterns were quite complex and undesirable for use in genetic mapping. The dominant behavior of the markers prevented the differentiation of heterozygotes from homozygotes with certainty, limiting the usefulness of arbitrary primer amplification products as markers in the construction of a genetic linkage map in peanut.  相似文献   

10.
Cultivated peanut (Arachis hypogaea) is an important crop, widely grown in tropical and subtropical regions of the world. It is highly susceptible to several biotic and abiotic stresses to which wild species are resistant. As a first step towards the introgression of these resistance genes into cultivated peanut, a linkage map based on microsatellite markers was constructed, using an F2 population obtained from a cross between two diploid wild species with AA genome (A. duranensis and A. stenosperma). A total of 271 new microsatellite markers were developed in the present study from SSR-enriched genomic libraries, expressed sequence tags (ESTs), and by “data-mining” sequences available in GenBank. Of these, 66 were polymorphic for cultivated peanut. The 271 new markers plus another 162 published for peanut were screened against both progenitors and 204 of these (47.1%) were polymorphic, with 170 codominant and 34 dominant markers. The 80 codominant markers segregating 1:2:1 (P<0.05) were initially used to establish the linkage groups. Distorted and dominant markers were subsequently included in the map. The resulting linkage map consists of 11 linkage groups covering 1,230.89 cM of total map distance, with an average distance of 7.24 cM between markers. This is the first microsatellite-based map published for Arachis, and the first map based on sequences that are all currently publicly available. Because most markers used were derived from ESTs and genomic libraries made using methylation-sensitive restriction enzymes, about one-third of the mapped markers are genic. Linkage group ordering is being validated in other mapping populations, with the aim of constructing a transferable reference map for Arachis.Electronic supplementary material is available for this at  相似文献   

11.

Background

Arachis hypogaea (peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for A. hypogaea is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of Arachis, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability.

Results

In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of Arachis, and produced an entire framework for the tetraploid genome. This map is based on an F2 population of 93 individuals obtained from the cross between the diploid A. ipaënsis (K30076) and the closely related A. magna (K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other Arachis species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes.

Conclusion

The development of genetic maps for Arachis diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for Arachis. Additionally, we were able to identify affinities of some Arachis linkage groups with Medicago truncatula, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop.  相似文献   

12.
Chromosome pairing, pollen and pod fertility in hybrids between cultivated tetraploidArachis hypogaea and 15 synthetic amphidiploids from 8 diploid species (7 of the A genome and 1 of the B genome) of sect.Arachis have been utilized for the identification of putative genome donors in the evolution of cultivatedA. hypogaea. These results, in conjunction with evidence from morphological similarities, phytogeographical distribution and some phytochemical features, confirm the segmental amphidiploid origin ofA. hypogaea. A. batizocoi andA. duranensis are suggested as the donors of the B genome and the A genome respectively.  相似文献   

13.
Arachis hypogaea is a widely cultivated crop both as an oilseed and protein source. The genomic analysis of Arachis species hitherto has been limited to the construction of genetic maps; the most comprehensive one contains 370 loci over 2,210 cM in length. However, no attempt has been made to analyze the physical structure of the peanut genome. To investigate the practicality of physical mapping in peanut, we applied a total of 117 oligonucleotide-based probes (overgos) derived from genetically mapped RFLP probes onto peanut BAC filters containing 182,784 peanut large-insert DNA clones in a multiplex experimental design; 91.5% of the overgos identified at least one BAC clone. In order to gain insights into the potential value of Arabidopsis genome sequence for studies in divergent species with complex genomes such as peanut, we employed 576 Arabidopsis-derived overgos selected on the basis of maximum homology to orthologous sequences in other plant taxa to screen the peanut BAC library. A total of 353 (61.3%) overgos detected at least one peanut BAC clone. This experiment represents the first steps toward the creation of a physical map in peanut and illustrates the potential value of leveraging information from distantly related species such as Arabidopsis for both practical applications such as comparative map-based cloning and shedding light on evolutionary relationships. We also evaluated the possible correlation between functional categories of Arabidopsis overgos and their success rates in hybridization to the peanut BAC library.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
15.
Summary The morphology of pachytene chromosomes was studied in A. glabrata Benth. and A. pusilla Benth. belonging respectively to the sections Rhizomatosae and Triseminale. These two species can not be crossed with the cultivated groundnut A. hypogaea L. All 20 chromosomes of A. glabrata could be identified individually and further classified into 5 basic types. The features that enabled the identification of chromosomes were: total length, arm ratios, nucleolus attachment and position and extent of heterochromatin. A simple key has been proposed for classifying different chromosomes to facilitate their easy identification. The genomes of A. glabrata did not resemble those of A. hypogaea except for the presence of an A chromosome, 2 euchromosomes and 2 nucleolus organisers. A. glabrata did not appear to be an amphidiploid but rather an allopolyploid hybrid. The genome of A. pusilla contained chromosomes unlike those of any other species of section Arachis. It was concluded that both these species are quite unrelated to other species of the section Arachis.  相似文献   

16.
Genomic in situ hybridization offers a powerful tool for investigating genome organisation and evolution of taxa known, or suspected, to be allopolyploids. The question of the diploid progenitors of cultivated peanut (Arachis hypogaea, 2n=4x=40) has been the subject of numerous studies at cytogenetical, cytochemical, biochemical and molecular levels, but no definitive conclusions have been reached. The biotinylated total genomic DNA from potential diploidArachis species were separately hybridized in situ to root tip chromosomes ofA. hypogaea and wild speciesA. monticola (2n=4x=40) without or mixed with an excess of unlabelled DNA from the species not used as a probe. Among the range of different species combinations used, the strong and uniform signals given by labelledA. ipaensis DNA when hybridized toA. hypogaea andA. monticola in combination with unlabelledA. villosa DNA indicates that overall molecular composition of twenty chromosomes ofA. hypogaea andA. monticola is very similar toA. ipaensis chromosomes. ProbingA. hypogaea andA. monticola chromosomes with labelled genomic DNA fromA. villosa mixed with unlabelled DNA fromA. ipaensis likewise labelled strongly and uniformly the other twenty chromosomes. BarringA. ipaensis, all the diploidArachis species presently investigated had characteristic centromeric bands in the twenty chromosomes within the complement indicating a clear division ofA. ipaensis from other species. InA. hypogaea andA. monticola only twenty chromosomes showed centromeric bands. These results (i) confirm the allopolyploid nature ofA. hypogaea andA. monticola, (ii) strongly support the view that wildA. monticola and cultivatedA. hypogaea are very closely related, and (iii) indicate thatA. villosa andA. ipaensis are the diploid wild progenitors of the tetraploid species studied. The present results also reveal that the nucleolus organizing region (NOR) originating fromA. villosa alone is expressed in the two tetraploid species.  相似文献   

17.
The cytogenetic characterization of Arachis species is useful for assessing the genomes present in this genus, for establishing the relationship among their representatives and for understanding the variability in the available germplasm. In this study, we used fluorescence in situ hybridization (FISH) to examine the distribution patterns of heterochromatin and rDNA genes in 12 Brazilian accessions of five species of the taxonomic section Arachis. The heterochromatic pattern varied considerably among the species: complements with centromeric bands in all of the chromosomes (A. hoehnei) and complements completely devoid of heterochromatin (A. gregoryi, A. magna) were observed. The number of 45S rDNA loci ranged from two (A. gregoryi) to eight (A. glandulifera), while the number of 5S rDNA loci was more conserved and varied from two (in most species) to four (A. hoehnei). In some species one pair of 5S rDNA loci was observed adjacent to 45S rDNA loci. The chromosomal markers revealed polymorphism in the three species with more than one accession (A. gregoryi, A. magna and A. valida) that were tested. The previous genome assignment for each of the species studied was confirmed, except for A. hoehnei. The intraspecific variability observed here suggests that an exhaustive cytogenetic and taxonomic analysis is still needed for some Arachis species.  相似文献   

18.
Embryo development following selfing was investigated in twowild diploid peanut species, Arachis batizocoi Krap. et Greg.(coll. K 9484) (2n = 20) and A. duranensis Krap. et Greg. nom.nud. (coll. K 7988) (2n = 20), and one cultivated tetraploidspecies, A. hypogaea L. NC-Ac 18000 (2n = 40). Rates of pegelongation and sequences of embryo development for each specieswere compared. Peg elongation rates were similar for the twowild species, but for A. hypogaea it was only one-third to one-halfthat of the diploid species. Embryos in A. hypogaea showed slightlymore rapid cell division than in the wild species. The observedvariation in reproductive development between the wild and cultivatedspecies indicate that different control mechanisms may governdevelopment in the different species and may be at least partiallyresponsible for failure to produce viable interspecific hybridsat various ploidy levels. The observations are also importantfor determining the time at which embryos of different speciesof Arachis will reach the appropriate stage of development forsuccessful culture on an artificial medium during embryo rescueprocedures. Peanut, Arachis hypogaea, wild species, embryo, peg  相似文献   

19.
Summary Seed protein profiles of nine diploid species (2n = 20), ten tetraploid accessions, two synthetic amphidiploids and two autotetraploids (2n = 40) were studied using SDS-polyacrylamide gel electrophoresis. While the general profiles suggested considerable homology among these taxa in spite of speciation and ploidy differences, appreciable genetic differences were present to support the existing genomic divisions and sub-divisions in the section Arachis. A high degree of relationship was indicated between the two diploid species (A. duranensis containing the A genome and A. batizocoi (ICG 8210) containing the B genome) and tetraploids A. monticola/ A. hypogaea (2n = 40) containing AABB genome. Similar relationships were recorded between the AABB synthetic amphidiploid and the profile obtained from the mixture of protein of A. duranensis and A. batizocoi, suggesting that these two diploid species were the donors of the A and B genome, respectively, to tetraploid A. monticola/A. hypogaea.Submitted as Journal Article No. 1114 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

20.
Wild Arachis species have been recognized as sources of resistanceto pests and pathogens that infect A. hypogaea L. and causesubstantial yield losses. However, utilization of these geneticresources for crop improvement has been difficult. This studywas conducted to (a) understand the processes of early embryogrowth and development in four Arachis species, two A. hypogaeacultivars and their hybrids and (b) identify parental compatibilitiesin reciprocal crosses of A. hypogaea. The results indicatedthat delayed fertilization beyond 24 h, coupled with slow proembryogrowth, leads to embryo abortion in many interspecific crosses.For example, in female A. cardenasii crosses, lack of or delayedfertilization leads to failure to obtain hybrids. When A. batizocoiwas used as a female parent, delayed fertilization and the inabilityof quiescent proembryos to resume growth after soil penetrationcaused abortion. Embryos of A. hypogaea x A. glandulifera crossesdeveloped normally during the first 21 d after fertilization,but then aborted at a later time. In this study, A. hypogaeawas always a better female parent than the wild Arachis species.Increasing the number of pollinations per cross, using the cultivatedspecies as the female parent, utilizing different A. hypogaeavarieties, and embryo rescue techniques are suggested to improvethe probability of obtaining interspecific hybrids in Arachis.Copyright1995, 1999 Academic Press Peanut, interspecific hybrids, Arachis, wild species, incompatibilities  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号