首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY Similarities in genetic control between the main body axis and its appendages have been generally explained in terms of genetic co-option. In particular, arthropod and vertebrate appendages have been explained to invoke a common ancestor already provided with patterned body outgrowths or independent recruitment in limb patterning of genes or genetic cassettes originally used for purposes other than axis patterning. An alternative explanation is that body appendages, including genitalia, are evolutionarily divergent duplicates (paramorphs) of the main body axis. However, are all metazoan limbs and genitalia homologous? The concept of body appendages as paramorphs of the main body axis eliminates the requirement for the last common ancestor of limb-bearing animals to have been provided with limbs. Moreover, the possibility for an animal to express complex organs ectopically demonstrates that positional and special homology may be ontogenetically and evolutionarily uncoupled. To assess the homology of animal genitalia, we need to take into account three different sets of mechanisms, all contributing to their positional and/or special homology and respectively involved (1) in the patterning of the main body axis, (2) in axis duplication, followed by limb patterning mechanisms diverging away from those still patterning the main body axis (axis paramorphism), and (3) in controlling the specification of sexual/genital features, which often, but not necessarily, come into play by modifying already developed and patterned body appendages. This analysis demonstrates that a combinatorial approach to homology helps disentangling phylogenetic and ontogenetic layers of homology.  相似文献   

2.
Segmentation is one of the most salient characteristics of arthropods, and differentiation of segments along the body axis is the basis of arthropod diversification. This article evaluates whether the evolution of segmentation involves the differentiation of already independent units, i.e., do segments evolve as modules? Because arthropod segmental differentiation is commonly equated with differential character of appendages, we analyze appendages by comparing similarities and differences in their development. The comparison of arthropod limbs, even between species, is a comparison of serially repeated structures. Arthropod limbs are not only reiterated along the body axis, but limbs themselves can be viewed as being composed of reiterated parts. The interpretation of such reiterated structures from an evolutionary viewpoint is far from obvious. One common view is that serial repetition is evidence of a modular organization, i.e., repeated structures with a common fundamental identity that develop semi-autonomously and are free to diversify independently. In this article, we evaluate arthropod limbs from a developmental perspective and ask: are all arthropod limbs patterned using a similar set of mechanisms which would reflect that they all share a generic coordinate patterning system? Using Drosophila as a basis for comparison, we find that appendage primordia, positioned along the body using segmental patterning coordinates, do indeed have elements of common identity. However, we do not find evidence of a single coordinate system shared either between limbs or among limb branches. Data concerning the other diagnostic of developmental modularity--semi-autonomy of development--are not currently available for sufficient taxa. Nonetheless, some data comparing patterns of morphogenesis provide evidence that limbs cannot always be temporally or spatially decoupled from the development of their neighbors, suggesting that segment modularity is a derived character.  相似文献   

3.
Current awareness of gene expression patterns and developmental mechanisms involved in the outgrowth and patterning of animal appendages contributes to our understanding of the origin and evolution of these body parts. Nevertheless, this vision needs to be complemented by a new adequate comparative framework, in the context of a factorial notion of homology. It may even be profitable to categorize as appendages also gut diverticula, body ingrowths and 'virtual appendages' such as the eye spots on butterfly wings. Another unwarranted framework is the Cartesian co-ordinate system onto which the appendages are currently described and where it is supposed that one patterning system exists for each separate Cartesian axis. It may be justified, instead, to look for correspondences between the appendages and the main body axis of the same animal, as the latter might be the source of the growth and patterning mechanisms which gave rise to the former. This hypothesis of axis paramorphisms is contrasted with the current hypothesis of gene co-option. Recapitulationism is a common fault in current Evo-Devo perspectives concerning the origin of the appendages, in that the evolutionary origin of appendages is often expected to be the same as one of the key mechanisms involved in the ontogenetic inception of appendage formation. This unwarranted perspective is also evident in the current debate on the nature of the default arthropod appendage. Most likely, a default arthropod appendage never did exist, as the first appendages probably developed along the trunk of an animal already patterned extensively along the antero-posterior body axis.  相似文献   

4.
5.
6.
SUMMARY The full-length sequence and developmental expression of an amphioxus Wnt gene ( AmphiWnt8 ) are described. In amphioxus embryos, the expression patterns of AmphiWnt8 suggest patterning roles in the forebrain, in the hindgut, and in the paraxial mesoderm that gives rise to the muscular somites. Phylogenetic analysis indicates that a single Wnt8 subfamily gene in an ancestral chordate duplicated early in vertebrate evolution into a Wnt8 clade and a Wnt8b clade. Coincident with this gene duplication, the functions of the ancestral AmphiWnt8 -like gene appear to have been divided between vertebrate Wnt8b (exclusively neurogenic, especially in the forebrain) and vertebrate Wnt8 (miscellaneous, especially in early somitogenesis). Amphioxus AmphiWnt8 and its vertebrate Wnt8 homologs probably play comparable roles in the early dorsoventral patterning of the embryonic body axis.  相似文献   

7.
Evolutionary studies suggest that the limbs of vertebrates and the appendages of arthropods do not share a common origin. However, recent genetic studies show new similarities in their developmental programmes. These similarities might be caused by the independent recruitment of homologous genes for similar functions or by the conservation of an ancestral proximal-distal development programme. This basic programme might have arisen in an ancestral outgrowth and been independently co-opted in vertebrate and arthropod appendages. It has subsequently diverged in both phyla to fine-pattern the limb and to control phylum-specific cellular events. We suggest that although vertebrate limbs and arthropod appendages are not strictly homologous structures they retain remnants of a common ancestral developmental programme.  相似文献   

8.
9.
10.
11.
The clonal composition of biramous and uniramous arthropod limbs   总被引:1,自引:0,他引:1  
We present the first comparative cell lineage analysis of uniramous and biramous limbs of an arthropod, the crustacean Orchestia cavimana. Via single cell labelling of the cells that are involved in limb development, we are able to present the first complete clonal composition of an arthropod limb. We show that the two main branches of crustacean limbs, exopod and endopod, are formed by a secondary subdivision of the growth zone of the main limb axis. Additional limb outgrowths such as exites result from the establishment of new axes. In contrast to general belief, uniramous limbs in Orchestia are not formed by the loss of the exopod but by suppression of the split into exopod and endopod. Our results offer a developmental approach to discriminate between the different kinds of branches of arthropod appendages. This leads to the conclusion that a 'true' biramous limb comprising an endopod and an exopod might have occurred much later in euarthropod evolution than has previously been thought, probably either in the lineage of the Mandibulata or that of the Tetraconata.  相似文献   

12.
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.  相似文献   

13.
Insect embryogenesis is best understood in the fruit fly Drosophila. However, Drosophila embryogenesis shows evolutionary-derived features: anterior patterning is controlled by a highly derived Hox gene bicoid, the body segments form almost simultaneously and appendages develop from imaginal discs. In contrast, embryogenesis of the red flour beetle Tribolium castaneum displays typical features in anterior patterning, axis and limb formation shared with most insects, other arthropods as well as with vertebrates. Anterior patterning depends on the conserved homeobox gene orthodenticle, the main body axis elongates sequentially and limbs grow continuously starting from an appendage bud. Thus, by analysing developmental processes in the beetle at the molecular and cellular level, inferences can be made for similar processes in other arthropods. With the completion of sequencing the Tribolium genome, the door is now open for post-genomic studies such as RNA expression profiling, proteomics and functional genomics to identify beetle-specific gene circuits.  相似文献   

14.
In vertebrate development, the HOX genes act to specify cell identity along much of the anterior-posterior axis of the embryonic central nervous system. In all vertebrates examined to date, the vitamin A metabolite retinoic acid is implicated in the patterning of the anterior posterior axis and the induction of HOX gene expression. Two recent papers have extended the study of retinoic acid induction of HOX genes to the closest relatives of the vertebrates, amphioxus and tunicates(1,2). In both these species, exogenous retinoic acid is able to induce ectopic expression of HOX 1 genes in the anterior central nervous system. This suggests that retinoic acid control of anterior-posterior axis formation and HOX induction is not specific to vertebrates. However, in the more distantly related echinoderms and arthropods, retinoic acid does not seem to act in the same way. Thus the role of retinoic acid in anterior-posterior axis specification may be a chordate innovation, perhaps linked to the evolution of another chordate character, the dorsal neural tube.  相似文献   

15.
BACKGROUND: The Drosophila genes wingless (wg) and decapentaplegic (dpp) comprise the top level of a hierarchical gene cascade involved in proximal-distal (PD) patterning of the legs. It remains unclear, whether this cascade is common to the appendages of all arthropods. Here, wg and dpp are studied in the millipede Glomeris marginata, a representative of the Myriapoda. RESULTS: Glomeris wg (Gm-wg) is expressed along the ventral side of the appendages compatible with functioning during the patterning of both the PD and dorsal-ventral (DV) axes. Gm-wg may also be involved in sensory organ formation in the gnathal appendages by inducing the expression of Distal-less (Dll) and H15 in the organ primordia. Expression of Glomeris dpp (Gm-dpp) is found at the tip of the trunk legs as well as weakly along the dorsal side of the legs in early stages. Taking data from other arthropods into account, these results may be interpreted in favor of a conserved mode of WG/DPP signaling. Apart from the main PD axis, many arthropod appendages have additional branches (e.g. endites). It is debated whether these extra branches develop their PD axis via the same mechanism as the main PD axis, or whether branch-specific mechanisms exist. Gene expression in possible endite homologs in Glomeris argues for the latter alternative. CONCLUSION: All available data argue in favor of a conserved role of WG/DPP morphogen gradients in guiding the development of the main PD axis. Additional branches in multibranched (multiramous) appendage types apparently do not utilize the WG/DPP signaling system for their PD development. This further supports recent work on crustaceans and insects, that lead to similar conclusions.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号