首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C(2)C(12) cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent "reserve" cells. Our results suggest that myostatin promoter activity is relatively higher during the G(1) phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G(1)-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The E2F transcription factor is a cellular target for the RB protein.   总被引:190,自引:0,他引:190  
  相似文献   

10.
11.
Photosystem II complex (PSII) of thylakoid membranes uses light energy to oxidise extremely stable water and produce oxygen (2H(2)O-->O(2)+4H(+)+4e(-)). PSII is compared with cytochrome c oxidase that catalyses the opposite reaction coupled to proton translocation. Cytochrome c oxidase has proton and water channels, and a tentative oxygen channel. I propose that functional PSII complexes also need a specific oxygen channel to direct O(2) from the water molecules bound to specific Mn atoms of the Mn cluster within PSII out to the membrane surface. The function of this channel will be to prevent oxygen being accessible to the radical pair P680(+)Pheo(-), thereby preventing singlet oxygen generation from the triplet P680 state in functional PSII. The important role of singlet oxygen in structurally perturbed non-functional photosystem II is also discussed.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号