首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The role of autophagy as a survival strategy of cells constitutes an emerging topic in the study of the pathogenesis of several diseases with autophagic changes being described in a number of age-related neurodegenerative disorders, including Parkinson's disease (PD). Although the etiology of PD is still unknown, both environmental (for example, paraquat exposure) and genetic factors have been investigated as putative causes of the disease. In the latter case, mutations or changes in the protein DJ-1 have been reported to be associated with autosomal recessive, early-onset parkinsonism. In this paper we established a model system to study the involvement of the DJ-1 protein in paraquat-induced autophagy. When human neuroblastoma SH-SY5Y cells were transfected with DJ-1-specific small interfering RNAs and exposed to paraquat, we observed (i) sensitization additive with paraquat-induced apoptotic cell death, (ii) inhibition of the cytoplasmic accumulation of autophagic vacuoles as well as the recruitment of LC3 fusion protein to the vacuoles, (iii) exacerbation of apoptotic cell death in the presence of the autophagy inhibitor 3-methyladenine, and (iv) an increase in mammalian target of rapamycin phosphorylation. Taken together, these findings suggest an active role for DJ-1 in the autophagic response produced by paraquat, providing evidence for the role of PD-related proteins in the autophagic degradation pathway, a factor that should be considered in the design of potential therapies for the treatment of the disease.  相似文献   

4.
5.
Feng X  Liu X  Zhang W  Xiao W 《The EMBO journal》2011,30(16):3397-3415
Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stroke.  相似文献   

6.
Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells.  相似文献   

7.
Mitochondrial dysfunction, proteasome inhibition, and α-synuclein aggregation are thought to play important roles in the pathogenesis of Parkinson's disease (PD). Rare cases of early-onset PD have been linked to mutations in the gene encoding DJ-1, a protein with antioxidant and chaperone functions. In this study, we examined whether DJ-1 protects against various stresses involved in PD, and we investigated the underlying mechanisms. Expression of wild-type DJ-1 rescued primary dopaminergic neurons from toxicity elicited by rotenone, proteasome inhibitors, and mutant α-synuclein. Neurons with reduced levels of endogenous DJ-1 were sensitized to each of these insults, and DJ-1 mutants involved in familial PD exhibited decreased neuroprotective activity. DJ-1 alleviated rotenone toxicity by up-regulating total intracellular glutathione. In contrast, inhibition of α-synuclein toxicity by DJ-1 correlated with up-regulation of the stress-inducible form of Hsp70. RNA interference studies revealed that this increase in Hsp70 levels was necessary for DJ-1-mediated suppression of α-synuclein aggregation, but not toxicity. Our findings suggest that DJ-1 acts as a versatile pro-survival factor in dopaminergic neurons, activating different protective mechanisms in response to a diverse range of PD-related insults.  相似文献   

8.
p53-dependent cell death signaling in neurons   总被引:15,自引:0,他引:15  
  相似文献   

9.
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4–8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G₂-checkpoints in p53 proficient cells.  相似文献   

10.
DJ-1 is an antioxidant protein whose loss of function by gene mutations has been linked to familial Parkinson's disease (PD). The main objective of the present study was to determine if this molecule was also involved in the pathogenesis of sporadic PD. For this purpose, quantitative immunoblot assays were performed to evaluate DJ-1 in cerebrospinal fluids (CSF) collected from sporadic PD patients (n=40) and non-PD controls (n=38). The results showed that the CSF DJ-1 levels in PD were significantly higher than those in non-PD controls. Especially, upregulation of CSF DJ-1 in the early stage of PD (Yahr I-II) were distinct compared to those in the advanced stage of PD (Yahr III-IV) and non-PD controls (p<0.001 by ANOVA with post hoc Bonferroni's test), suggesting a protective role of DJ-1 against oxidative stress during the early stage. Thus, we propose that CSF DJ-1 could be a possible biomarker for early sporadic PD.  相似文献   

11.
Sporadic Parkinson's disease (PD) affects primarily dopaminergic neurons of the substantia nigra pars compacta. There is evidence of necrotic and apoptotic neuronal death in PD, but the mechanisms behind selected dopaminergic neuronal death remain unknown. The tumor suppressor protein p53 functions to selectively destroy stressed or abnormal cells during life and development by means of necrosis and apoptosis. Activation of p53 leads to death in a variety of cells including neurons. p53 is a target of the nuclear enzyme Poly(ADP-ribose)polymerase (PARP), and PARP is activated following DNA damage that occurs following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP is the favored in vivo model of PD, and reproduces the pathophysiology, anatomy and biochemistry of PD. p53 protein normally exhibits a fleeting half-life, and regulation of p53 stability and activation is achieved mainly by post-translational modification. We find that p53 is heavily poly(ADP-ribosyl)ated by PARP-1 following MPTP intoxication. This post-translational modification serves to stabilize p53 and alters its transactivation of downstream genes. These influences of PARP-1 on p53 may underlie the mechanisms of MPTP-induced parkinsonism and other models of neuronal death.  相似文献   

12.
Lysosomal regulation is a poorly understood mechanism that is central to degradation and recycling processes. Here we report that LAMTOR1 (late endosomal/lysosomal adaptor, MAPK and mTOR activator 1) downregulation affects lysosomal activation, through mechanisms that are not solely due to mTORC1 inhibition. LAMTOR1 depletion strongly increases lysosomal structures that display a scattered intracellular positioning. Despite their altered positioning, those dispersed structures remain overall functional: (i) the trafficking and maturation of the lysosomal enzyme cathepsin B is not altered; (ii) the autophagic flux, ending up in the degradation of autophagic substrate inside lysosomes, is stimulated. Consequently, LAMTOR1-depleted cells face an aberrant lysosomal catabolism that produces excessive reactive oxygen species (ROS). ROS accumulation in turn triggers p53-dependent cell cycle arrest and apoptosis. Both mTORC1 activity and the stimulated autophagy are not necessary to this lysosomal cell death pathway. Thus, LAMTOR1 expression affects the tuning of lysosomal activation that can lead to p53-dependent apoptosis through excessive catabolism.  相似文献   

13.
14.
p53 Protein family is an important teratologic suppressor, but in certain conditions it can cause congenital abnormalities. p53 Family performs this dual role in development by integrating information from cell's interior with that from the environment to determine the choice between life and death. Understanding of p53 family developmental functions may lead to new therapeutic approaches for treatment and prevention of birth defects. Zebrafish is becoming the vertebrate system of choice for studying p53 family role in development.  相似文献   

15.
DNA damage induced by reactive oxygen species and several chemotherapeutic agents promotes both p53 and poly (ADP-ribose) polymerase (PARP) activation. p53 activation is well known to regulate apoptotic cell death, whereas robust activation of PARP-1 has been shown to promote a necrotic cell death associated with energetic collapse. Here we identify a novel role for p53 in modulating PARP enzymatic activity to regulate necrotic cell death. In mouse embryonic fibroblasts, human colorectal and human breast cancer cell lines, loss of p53 function promotes resistance to necrotic, PARP-mediated cell death. We therefore demonstrate that p53 can regulate both necrotic and apoptotic cell death, mutations or deletions in this tumor-suppressor protein may be selected by cancer cells to provide not only their resistance to apoptosis but also to necrosis, and explain resistance to chemotherapy and radiation even when it kills via non-apoptotic mechanisms.  相似文献   

16.
Yuan L  Tian C  Wang H  Song S  Li D  Xing G  Yin Y  He F  Zhang L 《EMBO reports》2012,13(4):363-370
The KRAB-type zinc-finger protein Apak was recently identified as a negative regulator of p53-mediated apoptosis. However, the mechanism of this selective regulation is not fully understood. Here, we show that Apak recognizes the TCTTN2−30TTGT consensus sequence through its zinc-fingers. This sequence is specifically found in intron 1 of the proapoptotic p53 target gene p53AIP1 and largely overlaps with the p53-binding sequence. Apak competes with p53 for binding to this site to inhibit p53AIP1 expression. Upon DNA damage, Apak dissociates from the DNA, which abolishes its inhibitory effect on p53-mediated apoptosis.  相似文献   

17.
Many cancer drugs have been developed to control tumor growth by inducing cancer cell apoptosis. However, several intracellular barriers could fail this attempt. One of these barrier is high expression of survivin. Survivin can interfere caspase activation and thereby abort apoptosis. In this study, we found that CCN1 suppressed the survivin expression in tumor cells of esophageal adenocarcinoma (EAC) and thus allowed apoptosis to finish. Furthermore, we demonstrated that this downregulation was dependent on p53 phosphorylation at Ser20, and CCN1 induced EAC cell apoptosis through the activation of p53.  相似文献   

18.
DJ-1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA-binding, and oxidative stress. Mutations that result in loss of DJ-1 function lead to early onset parkinsonism in humans, and DJ-1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ-1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ-1 protein. We have characterized these antibodies and confirmed the pathological co-localization of DJ-1 with other neurodegenerative disease-associated proteins, as well as the decrease in DJ-1 solubility in disease tissue. In addition, we report the presence of DJ-1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ-1 and alpha-synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ-1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease-associated proteins.  相似文献   

19.
20.
Both MDM2 and MDMX regulate p53, but these proteins play different roles in this process. To clarify the difference, we performed a yeast 2 hybrid (Y2H) screen using the MDM2 acidic domain as bait. DNAJB1 was found to specifically bind to MDM2, but not MDMX, in vitro and in vivo. Further investigation revealed that DNAJB1 stabilizes MDM2 at the post-translational level. The C-terminus of DNAJB1 is essential for its interaction with MDM2 and for MDM2 accumulation. MDM2 was degraded faster by a ubiquitin-mediated pathway when DNAJB1 was depleted. DNAJB1 inhibited the MDM2-mediated ubiquitination and degradation of p53 and contributed to p53 activation in cancer cells. Depletion of DNAJB1 in cancer cells inhibited activity of the p53 pathway, enhanced the activity of the Rb/E2F pathway, and promoted cancer cell growth in vitro and in vivo. This function was p53 dependent, and either human papillomavirus (HPV) E6 protein or siRNA against p53 was able to block the contribution caused by DNAJB1 depletion. In this study, we discovered a new MDM2 interacting protein, DNAJB1, and provided evidence to support its p53-dependent tumor suppressor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号