首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY 1. Pelagic and epipelic microalgal production were measured over a year in a pre-defined area (depth 0.5 m) in each of two lakes, one turbid and one with clear water. Further estimates of epiphytic production within reed stands were obtained by measuring production of periphyton developed on artificial substrata.
2. Total annual production of phytoplankton and epipelon was 34% greater in the turbid lake (190 g C m−2 year−1) than in the clearwater lake (141 g C m−2 year−1). However, the ratio of total production to mean water column TP concentration was two fold greater in the clearwater lake.
3. Phytoplankton accounted for the majority of the annual production (96%) in the turbid lake, while epipelic microalgal production dominated (77%) in the clear lake. The relative contribution of epipelic algae varied over the year, however, and in the turbid lake was higher in winter (11–25%), when the water was relatively clear, than during summer (0.7–1.7%), when the water was more turbid. In the clearwater lake, the relative contribution of epipelon was high both in winter, when the water was most clear, and in mid-summer, when phytoplankton production was constrained either by nutrients or grazing.
4. Compared with pelagic and epipelic primary production, epiphytic production within a reed stand was low and did not vary significantly between the lakes.
5. The study supports the theory of a competitive and compensatory trade-off between primary producers in lakes with contrasting nutrient concentrations, resulting in relatively small differences in overall production between clear and turbid lakes when integrating over the season and over different habitats.  相似文献   

2.
Karl Tangen  Pål Brettum 《Ecography》1978,1(2-3):128-147
A phytoplankton investigation was carried out in the subalpine, low-productive Norwegian lake Øvre Heimdalsvatn in 1969–70 and 1972. This paper describes the temporal and spatial distribution of the standing stock of phytoplankton, and phytoplankton primary productivity. The annual average primary productivity in 1972 was 4.0–4.9 mg C m−3 d−1; the annual average standing stock varied from 120 mg m−3 (freshweight) in 1969–70, to 250 mg m−3 in 1972. Phytoplankton species composition and size distribution is discussed. Throughout the year the phytoplankton is dominated by small (ultraplankton) species; μ-algae (< 5 μm) showed cell concentrations up to 15 mill. cells 1−1. The dominating group was chrysophytes; cryptophytes, dinoflagellates or green algae were at times abundant. A phytoplankton monthly budget and a diagram showing annual average carbon flow through the standing stock of phytoplankton are presented; the phytoplankton dynamics in Øvre Heimdalsvatn is compared to that of other low-productive lakes.  相似文献   

3.
Phytoplankton structure in different lake types in central Finland   总被引:2,自引:0,他引:2  
Pertti Eloranta 《Ecography》1986,9(3):214-224
Phyloplankton structure and its relation to physical and chemical properties of the water was studied in 58 central Finnish lakes. The biomass ranged from 0.2 to 14.2 g m−3 and the number of taxa per sample ranged from 33 to 152. The lakes were grouped into 5 types according to their trophic state: eutrophic, dyseutrophic, mesotrophic, oligotrophic, and acid oligotrophic lakes. The average biomass in eutrophic lakes was 5.57 g m−3, in dyseutrophic 3.54 g m−3, 1.23 g m−3 in mesotrophic, 0.52 g m−3 in oligotrophic and 0.39 g −3 in acid oligotrophic lakes. The average number of taxa per sample in the corresponding lake types were 109. 1, 79.3, 97.9, 90.9 and 43.8, respectively. The phytoplankton communities in eutrophic lakes were characterized by blue-green algae (21.2% of total biomass) and green algae (18.7% of total biomass). In dyseutrophic lakes the proportion of green algae was much smaller (7.2% of total biomass) than in eutrophic lakes, whereas the proportion of diatoms and cryptophytes was higher (28.2 and 20.4% of total biomass, respectively). Chrysophytes dominated in the oligotrophic and mesotrophic lakes (27.3–39.9% of total biomass). The contribution of dinoflagellates to the total biomass was highest in the most oligotrophic acidified lakes and in those lakes the relative proportions of blue-green and green algae were much higher than in the typical oligotrophic lakes. The lakes were also grouped into 8 community types according to the dominating algal group. Cyanophyceae- and Chlorophyceae-types characterized the eutrophic lakes, whereas Chrysophyceae-Dinopheceae-type was typical for most oligotrophic lakes. The other 5 types occurred in mesotrophic and oligotrophic lakes but the physical and chemical properties of these lakes did not differ much.  相似文献   

4.
In a clear and a turbid freshwater lake the biomasses of phytoplankton, periphytic algae and periphytonassociated macrograzers were followed in enclosures with and without fish (Rutilus rutilus) and four light levels (100%, 55%, 7% and < 1% of incoming light), respectively. Fish and light affected the biomass of primary producers and the benthic grazers in both lakes. The biomass of primary producers was generally higher in the turbid than the clear lake, and in both lakes fish positively affected the biomass, while shading reduced it. Total biomass of benthic grazing invertebrates was higher in the clear than in the turbid lake and the lakes were dominated by snails and chironomids + ostracods, respectively. While light had no effect on the biomass of grazers in the clear lake, snail breeding was delayed in the most shaded enclosures and presence of fish reduced the number of snails and the total biomass of grazers. In the turbid lake ostracod abundance was not influenced by light, but was higher in fish-free enclosures. Density of chironomids correlated positively with periphyton biomass in summer, while fish had no effect. Generally, light-mediated regulation of primary producers was stronger in the turbid than in the clear lake, but the regulation did not nambiguously influence the primary consumers. However, regulation by fish of the benthic grazer community was stronger in the clear than in the turbid lake, and in both lakes strong top-down effects on periphyton were seen. The results indicate that if present-day climate in Denmark in the future is found in coastal areas at higher latitudes, the effect of lower light during winter in such areas will be highest in clear lakes, with typically lower fish biomass and higher invertebrate grazer density.  相似文献   

5.
SUMMARY. 1. Potential phosphatase activity and phytoplankton from several lakes of different character were compared in order to evaluate the importance of lake water pH and phytoplankton composition for the activity and pH optimum of lake water phosphatases.
2. In oligotrophic lakes, in which phytoplankton biomass was most often dominated by Ochromonadaceae spp., optimum phosphate activity was found at pH values <6. In eutrophic lakes, where species of Cyanophyceae and Bacillariophyceae dominated the phytoplankton biomass, optimum phosphatase activity was found at pH 7.5 or 8.5.
3. The pH optimum of phosphatase activity often differed from the corresponding lake water pH.
4. Experimental variation in phosphorus availability resulted in predictable changes in phosphatase activity. However, specific phosphatase activity, calculated per biomass of phytoplankton, was dependent on plankton species composition.  相似文献   

6.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

7.
The species composition, biomass (measured as algal volumes) and chlorophyll concentration of epipelic algae was studies before (1977) and during (1978–1979) fertilization with phosphorus and nitrogen of Lake Gunillajaure, a small subarctic lake in northern Sweden.
The epipelic biomass, dominated by Cyanophyceae and Bacillariophyceae, was high (5.6–20.1 cm3 m−2) at all depths in the lake with the highest values in the hypolimnion (8–13.7 m). Calculated over mean depth it was 20 times higher than that of the phytoplankton. There was no significant increase in biomass during fertilization and neither did the species composition change. The chlorophyll concentration on the other hand were significantly higher in late 1978 and in 1979 which was probably an effect of the declining light climate caused by a large phytoplankton development in the lake. Constant seasonal biomass and species composition indicate a perennial epipelic community in this lake.  相似文献   

8.
SUMMARY 1. Biomass and production of picophytoplankton, phytoplankton and heterotrophic bacterioplankton were measured in seven lakes, exhibiting a broad range in water colour because of humic substances. The aim of the study was to identify environmental variables explaining the absolute and relative importance of picophytoplankton. In addition, two dystrophic lakes were fertilised with inorganic phosphorus and nitrogen, to test eventual nutrient limitation of picophytoplankton in these systems.
2. Picophytoplankton biomass and production were highest in lakes with low concentrations of dissolved organic carbon (DOC), and DOC proved the factor explaining most variation in picophytoplankton biomass and production. The relationship between picophytoplankton and lake trophy was negative, most likely because much P was bound in humic complexes. Picophytoplankton biomass decreased after the additions of P and N.
3. Compared with heterotrophic bacterioplankton, picophytoplankton were most successful at the clearwater end of the lake water colour gradient. Phytoplankton dominated over heterotrophic bacteria in the clearwater systems possibly because heterotrophic bacteria in such lakes are dependent on organic carbon produced by phytoplankton.
4. Compared with other phytoplankton, picophytoplankton did best at intermediate DOC concentrations; flagellates dominated in the humic lakes and large autotrophic phytoplankton in the clearwater lakes.
5. Picophytoplankton were not better competitors than large phytoplankton in situations when heterotrophic bacteria had access to a non-algal carbon source. Neither did their small size lead to picophytoplankton dominance over large phytoplankton in the clearwater lakes. Possible reasons include the ability of larger phytoplankton to float or swim to reduce sedimentation losses and to acquire nutrients by phagotrophy.  相似文献   

9.
A limnological survey of eight small, atmospherically acidified, forested glacial lakes in the Bohemian Forest (?umava, Böhmerwald) was performed in September 2003. Water chemistry of the tributaries and surface layer of each lake was determined, as well as species composition and biomass of the plankton along the water column, and littoral macrozoobenthos to assess the present status of the lakes. The progress in chemical reversal and biological recovery from acid stress was evaluated by comparing the current status of the lakes with results of a survey four years ago (1999) and former acidification data since the early 1990s. Both the current chemical lake status and the pelagic food web structure reflected the acidity of the tributaries and their aluminium (Al) and phosphorus (P) concentrations. One mesotrophic (Ple?né jezero) and three oligotrophic lakes (?erné jezero, ?ertovo jezero, and Rachelsee) are still chronically acidified, while four other oligotrophic lakes (Kleiner Arbersee, Prá?ilské jezero, Grosser Arbersee, and Laka) have recovered their carbonate buffering system. Total plankton biomass was very low and largely dominated by filamentous bacteria in the acidified oligotrophic lakes, while the mesotrophic lake had a higher biomass and was dominated by phytoplankton, which apparently profited from the higher P input. In contrast, both phytoplankton and crustacean zooplankton accounted for the majority of plankton biomass in the recovering lakes. This study has shown further progress in the reversal of lake water chemistry as well as further evidence of biological recovery compared to the 1999 survey. While no changes occurred in species composition of phytoplankton, a new ciliate species was found in one lake. In several lakes, this survey documented a return of zooplankton (e.g., Cladocera: Ceriodaphnia quadrangula and Rotifera: three Keratella species) and macrozoobenthos species (e.g., Ephemeroptera and Plecoptera). The beginning of biological recovery has been delayed for ~20 years after chemical reversal of the lakes.  相似文献   

10.
Bacterial growth and grazing mortality were estimated from Mayto October in two south Swedish oligotrophic lakes, one beinga clearwater lake (water colour 5–10 mg Pt l–1 DOC2.9–3.4 mg l–1, Secchi disk depth 5.0–9.4m) and the other a humic, brownwater lake (water colour 105–165mg Pt l–1, DOC 13.7–22.7mg l–1, Secchi diskdepth 1.3–2.1 m). Specific rates of growth and grazingmortality were generally similar for both lakes. However, theabundance of bacteria was consistently 2–3 times higherin the water of the humic lake, suggesting that the total productionand consumption of bacterial cells were also higher than inthe dearwater lake. The ratio of bacterial secondary productionto primary production was higher in the humic lake than in theclearwater lake, indicating that the bacterioplankton of thehumic lake utilize allochthonous substrates, in addition tosubstrates originating from autochthonous primary production.Most of the bacterial loss in both lakes could be attributedto small protozoan grazers. This implies that allochthonousand autochthonous organic carbon fixed by bacterioplankton isless important in terms of carbon flow to higher trophic levelsthan would be expected if macrozooplankton were the dominantbacterivores, providing a more direct and efficient transferof carbon to larger organisms.  相似文献   

11.
SUMMARY 1. The summertime phytoplankton assemblage in abysmally deep (Zmax: 589 m) Crater Lake, Oregon, consists of over 100 species, which are variously distributed in the upper 200 m of the vertical water column. The depth distribution of the lake's three most prevalent species follows a predictabk pattern: Nitzschia gracilis in the 0–20 m stratum, Tribonema sp. at mid–depth (80–20 m), and Stephanodiscus hantzschii in the lowermost stratum (160–200 m). These major species, which account for approximately 80% or more of the lake's total phytoplankton biomass and primary production, exist under atypical temperature, light, and nutrient conditions.
2. The spatial distribution of phytoplankton in Crater Lake resembles a three-tier structure. Unlike most lakes, where the entire phytoplankton communities exist in less disparate environmental conditions, or are vertically mixed periodically by storm events and seasonal lake turnover. the Crater Lake community is partitioned into stratified environments.
5. The disparate and unusual characteristics of these environments, and the hydrological and limnological stability of the lake basin, are perhaps important factors regulating the diversity, dominance. and partitioning of the lake's phytoplankton populations.  相似文献   

12.
Both in situ primary production and biomass (chlorophyll ) of fractionated phytoplankton (<64,µ, <25 µm and < 10 µm) were studied in 10 Canadian Shield lakes to elucidate the spatial and temporal variability of the contribution of size fractions to the biomass and primary production of the phytoplankton community. Mean summer biomass and production of each size fraction varied significantly between lakes. Within lakes, temporal variation was low for biomass but great for production. However, temporal variation can be considered of minor importance during the sampling period, as compared to the spatial variation between lakes. Algae from the < 10 µm size fraction were the most important in biomass (41–65 %) and production (23–69%). The temporal trends for both phytoplankton variables thus generally followed closely that of the < 10 µm size fraction. Among the physical, chemical and morphometric variables of the studied lakes, water transparency (Secchi disk), total phosphorus, lake volume, lake area, and mean depth gave the best correlations with phytoplankton variables.Contribution number 354 from the Groupe de recherches en Ecologie des Eaux douces, Limnological Research Group, Université de Montréal.  相似文献   

13.
SUMMARY. 1. Population dynamics (density, biomass, annual production), gut contents and feeding rates of mayflies ( Deleatidium spp.; Leptophlebiidae) were compared in two naturally acid (mean pH≃4.8). brownwater streams and two alkaline (mean pH 7.5), clearwater streams in South Westland, New Zealand.
2. Mean densities of larvae (range 234–2318 m−2) were higher in alkaline streams on most of the six bimonthly sampling dates. Mean biomass (range 0.020–0.376 g larval dry weight (LDW) m−2) was always highest at the stable, spring-fed, alkaline site and was lower at the acid sites and another alkaline site where the population was always dominated by small larvae.
3. Annual production was high at the more stable, alkaline site (10.35 gLDW m−2) but much lower at the other sites (2.49–3.77 g m−2).
4. Gut contents of larvae were dominated by fine (45–75 μm widest diameter) paniculate matter (69–99%), diatoms (up to 21%) and. at one site, filamentous algae (8–13%).
5. Grazing rates of mayflies on epilithon were significantly higher on stones taken from acid than alkaline streams and material grazed from the former contained a higher proportion of inorganic material (87–93% and 61–83% inorganics, respectively).
6. Higher grazing rates may reflect lower quality of epilithic food in acid, brownwater streams, a factor that could contribute to the lower productivity of Deleatidium populations at these sites.  相似文献   

14.
L. Arvola 《Hydrobiologia》1983,101(1-2):105-110
Primary production and phytoplankton in polyhumic lakes showed a very distinct seasonal succession. A vigorous spring maximum produced by Chlamydomonas green algae at the beginning of the growing season and two summer maxima composed mainly of Mallomonas caudata Iwanoff were typical. The annual primary production was ca. 6 g org. C · m–2 in both lakes. The mean epilimnetic biomass was 1.1 in the first lake and 2.2 g · m–2 (ww) in the second one. The maximum phytoplankton biomass, 14 g · m–2, was observed during the vernal peak in May.  相似文献   

15.
This study focused on unraveling the natural mechanism for the frequent shifts in alternative regimes in pristine shallow lakes of the Boreal Plains, Alberta, Canada. The lakes tend to be clear and dominated by submerged aquatic vegetation (SAV) or turbid and dominated by phytoplankton. We report on the inter-annual response of 23 lakes from 2001 to 2007. We explore the effect of fluctuations in annual precipitation on the lake response including water depth, total phosphorus (TP) concentration, turbidity, phytoplankton biomass, SAV biomass, and the proportion of clear and turbid lakes. The regime switches appear driven by the transient dynamics of phytoplankton, and dilution of nutrients, phytoplankton biomass, and turbidity during wet years, and evapoconcentration during dry years. Increased precipitation was correlated with decreased phytoplankton biomass, TP concentration, chloride concentration, and turbidity. In 2005, the wettest year, no phytoplankton-dominated lakes were observed. During the driest year (2002), the phytoplankton-dominant regime (>18 μg chl-a L?1) occurred in 22% of lakes, which was higher than the study period average. SAV biomass was not directly affected by precipitation, but was negatively associated with phytoplankton biomass and positively associated with the previous year’s SAV growth. SAV biomass was carried over from year-to-year, and the occurrence of SAV-dominated (>25% cover) lakes was significantly higher in 2007 (90%) following 3 years of high precipitation levels.  相似文献   

16.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

17.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

18.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

19.
The restoration and management of shallow, pond-like systems are hindered by limitations in the applicability of the well-known models describing the relationship between nutrients and lake phytoplankton biomass in higher ranges of nutrient concentration. Trophic models for naturally eutrophic small, shallow, endorheic lakes have not yet been developed, even though these are the most frequent standing waters in continental lowlands. The aim of this study was to identify variables that can be considered as main drivers of phytoplankton biomass and to build a predictive model. The influence of potential drivers of phytoplankton biomass (nutrients, other chemical variables, land use, lake use and lake depth) from 24 shallow eutrophic lakes was tested using data in the Pannonian ecoregion (Hungary and Romania). By incorporating lake depth, TP, TN and lake use as independent and Chl-a as dependent variables into different models (multiple regression model, GLM and multilayer perception model) predictive models were built. These models explained >50% of the variance. Although phytoplankton biomass in small, shallow, enriched lakes is strongly influenced by stochastic effects, our results suggest that phytoplankton biomass can be predicted by applying a multiple stressor approach, and that the model results can be used for management purposes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号