首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The brome mosaic virus (BMV) RNA-dependent RNA polymerase (RdRp) directs template-specific synthesis of (-)-strand genomic and (+)-strand subgenomic RNAs in vitro. Although the requirements for (-)-strand RNA synthesis have been characterized previously, the mechanism of subgenomic RNA synthesis has not. Mutational analysis of the subgenomic promoter revealed that the +1 cytidylate and the +2 adenylate are important for RNA synthesis. Unlike (-)-strand RNA synthesis, which required only a high GTP concentration, subgenomic RNA synthesis required high concentrations of both GTP and UTP. Phylogenetic analysis of the sequences surrounding the initiation sites for subgenomic and genomic (+)-strand RNA synthesis in representative members of the alphavirus-like superfamily revealed that the +1 and +2 positions are highly conserved as a pyrimidine-adenylate. GDP and dinucleotide primers were able to more efficiently stimulate (-)-strand synthesis than subgenomic synthesis under conditions of limiting GTP. Oligonucleotide products of 6-, 7-, and 9-nt were synthesized and released by RdRp in 3-20-fold molar excess to full-length subgenomic RNA. Termination of RNA synthesis by RdRp was not induced by template sequence alone. Our characterization of the stepwise mechanism of subgenomic and (-)-strand RNA synthesis by RdRp permits comparisons to the mechanism of DNA-dependent RNA synthesis.  相似文献   

3.
Evidence for the intermolecular recombination between the RNA genomes of picornaviruses and coronaviruses as well as current models of the mechanisms of these phenomena are reviewed. Biological implications of the recombination between RNA genomes are briefly discussed. Examples of the recombinant analysis of the viral genome functions are given.  相似文献   

4.
Bacterial RNA polymerase and eukaryotic RNA polymerase II exhibit striking structural similarities, including similarities in overall structure, relative positions of subunits, relative positions of functional determinants, and structures and folding topologies of subunits. These structural similarities are paralleled by similarities in mechanisms of interaction with DNA.  相似文献   

5.
6.
7.
8.
RNA-dependent RNA polymerase activity was found in mouse hepatitis virus strain A59 (MHV-A59)-infected cells. The enzyme was induced in the infected cells and could not be detected in the MHV-A59 virion. Two peaks of RNA polymerase activity, one early and the other late in infection, were detected. These polymerase activities were in temporal sequence with early and late virus-specific RNA synthesis. Both of them were found to be associated with membrane fractions. There were significant differences in the enzymatic properties of the two polymerases. The early polymerase, but not the late polymerase, could be activated by potassium ions in the absence of magnesium ions and also had a lower optimum pH than the late polymerase. It was therefore probable that the enzymes represent two different species of RNA polymerase and perform different roles in virus-specific RNA synthesis. The effects of cycloheximide on MHV-specific RNA synthesis were determined. Continuous protein synthesis was required for both early and late RNA synthesis and might also be required for shutoff of early RNA synthesis.  相似文献   

9.
E. coli RNA polymerase interacts homologously with two different promoters   总被引:235,自引:0,他引:235  
U Siebenlist  R B Simpson  W Gilbert 《Cell》1980,20(2):269-281
We present and review experiments that identify points of close approach of the RNA polymerase to two promoters, lac UV5 and T7 A3. We identify the contacts to the phosphates along the DNA backbone, to the N7s of guanines in the major groove and the N3s of adenines in the minor groove, and to the methyl groups of thymines. These contacts to the two promoters are strikingly homologous in space, as shown on three-dimensional models, and identify major regions of interactions lying on one side of the DNA molecule (at -35 and -16), as well as further areas extending through the Pribnow box. Both promoters are unwound similarly by the polymerase, across a region of about twelve bases extending from the middle of the Pribnow box to just beyond the RNA start site. We discuss the areas of interaction in the context of promoter homologies and promoter mutations. The disposition of the contacts in space suggests a model for the pathway along which the RNA polymerase binds to promoters.  相似文献   

10.
At 25°C rifampicin strongly stimulates the synthesis of the dinucleotide pppA-U catalyzed by the DNA-dependent RNA polymerase from Escherichia coli. If the antibiotic is added to the enzyme during the synthesis of RNA the stimulatory effect on the dinucleotide synthesis is distinctly retarded as is its inhibitory action on RNA synthesis. It is proposed that this lag period is due to a retardation of the binding of rifampicin to RNA polymerase which is required for its action. Because of this slower binding rifampicin — although an inhibitor of RNA chain elongation — mimics the action of an inhibitor of RNA chain initiation.  相似文献   

11.
12.
13.
14.
15.
Molecular motors can exhibit Brownian ratchet or power stroke mechanisms. These mechanistic categories are related to transition state position: An early transition state suggests that chemical energy is stored and then released during the step (stroke) while a late transition state suggests that the release of chemical energy rectifies thermally activated motion that has already occurred (ratchet). Cellular RNA polymerases are thought to be ratchets that can push each other forward to reduce pausing during elongation. Here, by constructing a two-dimensional energy landscape from the individual landscapes of active and backtracked enzymes, we identify a new pushing mechanism which is the result of a saddle trajectory that arises in the two-dimensional energy landscape of interacting enzymes. We show that this mechanism is more effective with an early transition state suggesting that interacting RNAPs might translocate via a power stroke.  相似文献   

16.
17.
18.
19.
20.
Next generation technologies enable massive-scale cDNA sequencing (so-called RNA-Seq). Mainly because of the difficulty of aligning short reads on exon-exon junctions, no attempts have been made so far to use RNA-Seq for building gene models de novo, that is, in the absence of a set of known genes and/or splicing events. We present G-Mo.R-Se (Gene Modelling using RNA-Seq), an approach aimed at building gene models directly from RNA-Seq and demonstrate its utility on the grapevine genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号