首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cholera toxin is incubated under u.v. light with NAD+ labelled in either the adenine or the nicotinamide moiety, radioactivity becomes covalently bound to the protein. The reaction is specific for cholera toxin, and is inhibited by excess unlabelled NAD+ or NAD analogues. Only the active A 1 chain of the toxin is labelled. The u.v.-absorption spectrum of the product is very similar to that of NAD+, and shows the same reaction with cyanide. The nature of the product is therefore different from that found when diphtheria toxin is photolabelled [Carroll & Collier (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3307-3311] in that the yield is lower, but both moieties of the NAD molecule become bound.  相似文献   

2.
Culture supernates containing pertussis toxin (PT) from four strains of Bordetella pertussis were examined for both immunological reactivity and biological activity. PT from all four strains sensitized mice to histamine and toxin was detectable in supernates of all strains when examined by Western blotting with polyclonal antiserum to PT. In supernates of three of the four strains, PT was detectable by an enzyme-linked immunosorbent assay (ELISA) using mouse monoclonal antibody to subunit S1 of PT as the third antibody layer. However, supernates from one strain, 18323, failed to react in ELISA. Electroblots probed with the monoclonal antibody labelled subunit S1 of PT from all strains except that of strain 18323. PT of strain 18323, whilst retaining histamine-sensitizing activity, differed antigenically from that of other strains.  相似文献   

3.
重组百日咳毒素S1亚单位的纯化及免疫原性   总被引:1,自引:0,他引:1  
将重组百日咳毒素S1亚单位基因的质粒在DH5α和TOP10两株大肠杆菌中进行表达,并对表达产物进行了初步纯化.粗制的rS1免疫家兔所得血清,用HP-PT及1B7-PT包被的ELISA测定效价,并做被动免疫保护试验.抗PT的抗体滴度为1:32 000.该抗rS1血清在小鼠被动免疫保护试验中,对百日咳杆菌18323毒株进行脑腔攻击的被动免疫保护作用达到100%.证明rS1亚单位具有良好的抗原性和免疫原性,并与天然S1具有相同的抗原表位.  相似文献   

4.
将重组百日咳毒素S1亚单位基因的质粒在DH5α和TOPl0两株大肠杆菌中进行表达,并对表达产物进行了初步纯化。粗制的rSl免疫家兔所得血清,用HP—PT及1B7-PT包被的ELISA测定效价,并做被动免疫保护试验。抗PT的抗体滴度为1:32000。该抗rSl血清在小鼠被动免疫保护试验中,对百日咳杆菌18323毒株进行脑腔攻击的被动免疫保护作用达到100%。证明rSl亚单位具有良好的抗原性和免疫原性,并与天然S1具有相同的抗原表位。  相似文献   

5.
The subunit S1 is important for pertussis toxin secretion   总被引:14,自引:0,他引:14  
Pertussis toxin is a protein containing five noncovalently linked subunits which are assembled into the monomer A (containing the subunit S1) and the oligomer B (containing subunits S2, S3, S4, and S5 in a 1:1:2:1 ratio). Each of the five subunits is synthesized as a precursor containing a secretory leader peptide and is secreted into the periplasm of Bordetella pertussis where the five subunits are assembled into the oligomeric structure and then released into the culture medium. In the absence of subunit S3 the remaining subunits are not secreted into the medium, thus suggesting that the assembled structure is necessary for the release of the toxin into the supernatant. In this study we describe four B. pertussis mutants which secrete into the medium low amounts of the B oligomer of pertussis toxin. These mutants have single or multiple changes in the gene encoding the S1 subunit and synthesize S1 proteins with altered conformation which are not assembled into the holotoxin and are apparently degraded in the periplasm. These data indicate that while the B oligomer alone has the structural information necessary for the extracellular export of pertussis toxin, the S1 subunit is required for its efficient release into the medium.  相似文献   

6.
The gene encoding a catalytically active deletion peptide, the C180 peptide, of the S-1 subunit of pertussis toxin was engineered to facilitate mutagenesis at the Trp-26 (wild-type) coding sequence. A synthetic double-stranded oligonucleotide was inserted into the C180 gene such that all possible codons would be introduced into position 26. Seven individual mutants of the C180 peptide which possessed amino acid substitutions at residue 26 (collectively termed C180W26n peptides) were purified from periplasmic extracts of Escherichia coli. Each C180W26n peptide was present as a single major peptide that had an apparent molecular mass of between 20.9 and 24.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and each showed similar immunoreactivity relative to the C180 peptide. The C180W26n peptides demonstrated marked reduction of both ADP-ribosyltransferase and NAD glycohydrolase activities at 25 nM and 10 microM NAD, respectively. Kinetic analysis of the two most active mutants, C180W26F and C180W26Y, revealed that the major perturbation of NAD glycohydrolase activity was due to an increase (approximately 20-fold) in the Km for NAD between these mutants and the C180 peptide.  相似文献   

7.
To understand the immunologic characteristics of pertussis toxin molecule and to explore the possibility of developing a synthetic vaccine, T cell epitopes on the enzymatic S1 subunit of pertussis toxin were studied by measuring the proliferative response of immune murine lymph node cells and T cell lines to Ag and to synthetic peptides. The maximum in vitro T cell proliferative response was obtained by stimulating immune lymphoid cells with 20 nM of the enzymatic S1 subunit. When the T cell proliferative response of murine lymphoid cells with different MHC backgrounds was tested, only mice bearing the H-2d haplotype were high responder to the S1 subunit. To determine T cell epitopes on the S1 subunit, the proliferative response of BALB/c immune lymphoid cells to several synthetic S1 peptides was measured. Only the peptide containing amino acid residues, 65-79, was recognized by BALB/c lymphoid cells and was confirmed to contain a T cell epitope by generating S1 specific BALB/c T cell line. By using this T cell line, the response of BALB/c mice to the S1 subunit as well as to peptide 65-79 was shown to be restricted to the I-Ad sublocus of class II Ag. Finally, we showed that lymph node cells of mice immunized with peptide 65-79 respond to the native S1 subunit.  相似文献   

8.
Trypsin digestion of pertussis toxin (PT) preferentially cleaved the S1 subunit at Arg-218 without detectable degradation of the B oligomer. The fragment produced, termed the tryptic S1 fragment, appears to remain associated with the B oligomer. Chymotrypsin digestion of PT also preferentially cleaved the S1 subunit without detectable degradation of the B oligomer. The chymotryptic S1 fragment possessed a slightly lower apparent molecular weight than the tryptic S1 fragment and was more accessible to the respective protease. Trypsin- and chymotrypsin-treated PT and PT required the presence of dithiothreitol and ATP for optimal enzymatic activity. Trypsin-treated PT showed approximately a 2-4-fold higher level of expression of ADP-ribosyltransferase and NAD-glycohydrolase activities than PT. Chymotrypsin-treated PT also exhibited approximately a 2-fold greater level of ADP-ribosyltransferase activity than PT. The observed increase in activity of protease-treated PT was due primarily to a shorter time for activation in PT mediated ADP-ribosylation of transducin. In addition, trypsin-digested PT possessed the same cytotoxic potential for Chinese hamster ovary cell clustering as PT. One possible role for the generation of a proteolytic fragment of the S1 subunit of PT would be to produce a catalytic fragment with increased efficiency for ADP-ribosylation of G proteins in vivo.  相似文献   

9.
Abstract N-terminal amino acid sequence analysis of the enzymatic subunit S1 of pertussis toxin from Bordetella pertussis showed the structure of the first 25 residues. 2 different oligodeoxyribonucleotide probes were synthesized as mixed 32-mers corresponding to the DNA sequence deduced. Southern blot analysis of pertussis DNA digested with restriction endonuclease Cla I showed that both mixed probes hybridized with a DNA fragment of about 10 kb, thus identifying a B. pertussis gene corresponding to the protein structure determined.  相似文献   

10.
Labelled [125l]-pertussis toxin was prepared and used to measure the association of pertussis toxin (PT) to eukaryotic cells. PT was radioiodinated by the lactoperoxidase method which preferentially radioiodinated the S1 subunit. PT was radioiodinated at a high specific activity and possessed the same cytotoxicity as native PT as demonstrated by the ability to cluster Chinese hamster ovary (CHO) cells. Cell association of [125l]-PT was not inhibited by excess non-radiolabelled PT, which indicated that the initial interaction between PT and CHO cells involved a large number of low-affinity receptors. At 37° C, the S1 within cell-associated PT was preferentially processed to an S1 with a lower apparent molecular weight (termed S1p). This processing was inhibited by the addition of unlabelled PT, indicating that the processing event was saturable and specific. S1 processing occurred in CHO, Madin-Darby canine kidney (MDCK) cells, and pig kidney (LLC-PK1) cells. A pulse-chase experiment showed that, at 37° C but not at 22° C, essentially all of the cell-associated S1 was processed within 3 h of a chase. Reagents that were previously shown to inhibit the ability of PT to ADP-ribosylate G1 proteins in intact CHO cells also inhibited the preferential processing of S1 within cell-associated PT, in the order of efficiency: 22°C chloroquine nocodazole brefeldin A. This indicates that S1 processing requires an early endosomal function.  相似文献   

11.
Pertussis toxin (PT) comprises an active subunit (S1), which ADP-ribosylates the alpha subunit of several mammalian G proteins, and the B oligomer (S2–S5), which binds glycoconjugate receptors on cells. In a previous report, expression of S1 in Cos cells resulted in no observable cytotoxicity, and it was hypothesized that either S1 failed to locate its target proteins or the B oligomer was also necessary for cytotoxicity. To address this, we stably transfected S1 with and without a signal peptide into mammalian cells. Immunofluorescence analysis confirmed the function of the signal peptide. Surprisingly, we found that S1 was active in both transfectants, as determined by clustering of transfected Chinese hamster ovary (CHO) cells and ADP-ribosylation of G proteins. Constructs with a cysteine-to-serine change at residue 201 or a truncated S1 (residues 1–181) were also active when transfected into cells. Constructs with an inactive mutant S1 had no activity, confirming that the observed results were due to the activity of the toxin subunit. We conclude that S1 is active when expressed in mammalian cells without the B oligomer, that secretion into the endoplasmic reticulum does not prevent this activity and that the C-terminal portion of S1 is not required for its activity in cells.  相似文献   

12.
The equilibrium dissociation constant of NAD+ and pertussis toxin was determined by equilibrium dialysis and by the quenching of the protein's intrinsic fluorescence on titration with NAD+. A binding constant, Kd, of 24 +/- 2 microM at 30 degrees C was obtained from equilibrium dialysis, consistent with the previously determined value for the Michaelis constant, Km, of 30 +/- 5 microM for NAD+ (when the toxin is catalysing the ADP-ribosylation of water and of dithiothreitol). The intrinsic fluorescence of pertussis toxin was quenched by up to 60% on titration with NAD+, and after correction for dilution and inner filter effects, a Kd value of 27 microM at 30 degrees C was obtained, agreeing well with that found by equilibrium dialysis. The binding constants were measured at a number of temperatures using both techniques, and from this the enthalpy of binding of NAD+ to toxin was determined to be 30 kJ.mol-1, a typical value for a protein-ligand interaction. There is one binding site for NAD+ per toxin molecule.  相似文献   

13.
Purified recombinant S1 subunit of pertussis toxin (rS1) possessed similar NAD glycohydrolase and ADP-ribosyltransferase activities as S1 subunit purified from pertussis toxin. Purified rS1 and C180 peptide, a deletion peptide which contains amino acids 1-180 of rS1, had Km values for NAD of 24 and 13 microM and kcat values of 22 and 24 h-1, respectively, in the NAD glycohydrolase reaction. In contrast, under linear velocity conditions, the C180 peptide possessed less than 1% of the ADP-ribosyltransferase activity of rS1 using transducin as target. Radiolabeled tryptic peptides of transducin that had been ADP-ribosylated by either rS1 or C180 peptide were identical which suggested that both rS1 and C180 peptide ADP-ribosylated the same amino acid within transducin. To extend the functional primary amino acid map of the S1 subunit, two carboxyl-terminal deletions were constructed. One deletion, C195, removed the 40 carboxyl-terminal amino acids and the other, C219, removed the 16 carboxyl-terminal amino acids of the S1 subunit. Both C195 and C219 migrated in reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular masses of 22,000 and 27,500 Da, respectively. Relative to the C180 peptide C195 possessed 10-20-fold increase and C219 possessed 100-150-fold increase in ADP-ribosyltransferase activities. In addition, C219 appeared to have the same ADP-ribosyltransferase activity as rS1. These studies indicate that (i) rS1, purified from Escherichia coli, possesses biochemical properties similar to S1 subunit purified from pertussis toxin, (ii) amino acids 1-180 of the S1 subunit contain residues required for NAD binding, N-glycosidic cleavage, and transfer of ADP-ribose to transducin, and (iii) residues between 181 and 219 of the S1 subunit are required for efficient ADP-ribosyltransferase activity.  相似文献   

14.
Pande AH  Moe D  Jamnadas M  Tatulian SA  Teter K 《Biochemistry》2006,45(46):13734-13740
Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before the A chain passes into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain.  相似文献   

15.
H R Kaslow  D D Lesikar 《Biochemistry》1987,26(14):4397-4402
The combination of ATP, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), and DTT (dithiothreitol) is known to promote the expression of the NAD glycohydrolase activity of pertussis toxin, which resides in the toxin's S1 subunit. By monitoring changes in electrophoretic mobility, we have found that ATP and CHAPS act by promoting the reduction of the disulfide bond of the S1 subunit. In addition, ATP, CHAPS, and DTT allowed sulfhydryl-alkylating reagents to inactivate the NAD glycohydrolase activity. In the presence of iodo[14C]acetate, the combination of ATP, CHAPS, and DTT increased 14C incorporation into only the S1 subunit of the toxin, indicating that alkylation of this subunit was responsible for the loss of activity. If iodoacetate is used as the alkylating reagent, alkylation can be monitored by an acidic shift in the isoelectric point of the S1 peptide. Including NAD in alkylation reactions promoted the accumulation of a form of the S1 peptide with an isoelectric point intermediate between that of native S1 and that of S1 alkylated in the absence of NAD. This result suggests that NAD interacts with one of the two cysteines of the S1 subunit. In addition, we found the pH optimum for the NAD glycohydrolase activity of pertussis toxin is 8, which may reflect the participation of a cysteine in the catalytic mechanism of the toxin.  相似文献   

16.
Structural characterization of pertussis toxin A subunit   总被引:14,自引:0,他引:14  
The relationship between the structure of the A subunit of pertussis toxin and its function was analyzed. Limited tryptic digestion of the A subunit converted the protein to two stable fragments (Mr = 20,000 and 18,000). Antibodies raised to synthetic peptides homologous to regions in the A subunit were used to map these fragments. Both fragments were shown to contain the NH2-terminal portion but not the COOH-terminal portion of the A subunit. While these fragments exhibited NAD glycohydrolase activity, they were unable to reassociate with the B oligomer of the toxin. Thus the COOH-terminal portion of the A subunit does not contain the residues which are required for the NAD glycohydrolase activity of the toxin. However, this region of the molecule may be important for maintaining the oligomeric structure of the toxin. These results suggest that the A subunit of pertussis toxin is similar in structure to the A subunit of cholera toxin. In addition, antibodies raised to a synthetic peptide identical to residues 6-17 of the A subunit of pertussis toxin will bind to the A subunit of cholera toxin.  相似文献   

17.
The kinetic constants for the ADP-ribosylation of transducin were determined for the recombinant S1 subunit of pertussis toxin (rS1, composed of 235 amino acids) and two genetically derived deletion peptides, C180 and C195, which are composed of the 180 and 195 amino-terminal residues of the S1 subunit, respectively. Titration of NAD in the presence of a constant concentration of transducin (0.5 microM) showed that the KmappNAD in the ADP-ribosylation of transducin were similar, approximately 20 microM, for rS1, C195, and C180. In contrast, titration of transducin in the presence of a constant concentration of NAD (25 nM) showed that rS1 possessed a lower Kmapp(transducin) and greater kcat than either C195 or C180. Previous studies (Cortina, G., and Barbieri, J.T. (1991) J. Biol. Chem. 266, 3022-3030) showed that the 16 carboxyl terminal residues of the S1 subunit did not function in the ADP-ribosylation of transducin. It thus appears that residues between 195 and 219 of the S1 subunit are required for high affinity transducin binding and may be involved in the transfer of ADP-ribose to transducin. To localize the defect in the recognition of transducin by C180, rS1 and C180 were assayed for the ability to ADP-ribosylate either transducin or the purified alpha subunit of transducin (T alpha). Upon saturation of the target protein, rS1 ADP-ribosylated equivalent moles of transducin or T alpha, with the linear velocity of rS1-mediated ADP-ribosylation of transducin approximately 16-fold more rapid than the rate of ADP-ribosylation of T alpha. In contrast, the initial linear velocity of C180-mediated ADP-ribosylation of transducin was only 1.7-fold more rapid than the rate of ADP-ribosylation of T alpha. These data indicate that the amino-terminal 180 amino acids of S1 confer the specificity for ADP-ribosylation primarily through the interaction with T alpha, while residues between 195 and 219 of S1 confer high affinity binding to transducin primarily through the interaction, either directly or indirectly, with T beta gamma.  相似文献   

18.
The currently used pertussis vaccines are highly efficacious; however, neonates are susceptible to whooping cough up to the sixth month. In agreement, DTP-immunized neonate mice were not protected against intracerebral challenge with Bordetella pertussis. Neonate mice immunized with either DTP or a recombinant-BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin do not show a humoral immune response against PT. On the other hand, rBCG-Pertussis induces higher PT-specific IFN-gamma production and an increase in both IFN-gamma(+) and TNF-alpha(+)-CD4(+)-T cells than the whole cell pertussis vaccine and confers protection against a lethal intracerebral challenge with B. pertussis.  相似文献   

19.

Background  

Pertussis toxin (PT) is an exotoxin virulence factor produced by Bordetella pertussis, the causative agent of whooping cough. PT consists of an active subunit (S1) that ADP-ribosylates the alpha subunit of several mammalian G proteins, and a B oligomer (S2–S5) that binds glycoconjugate receptors on cells. PT appears to enter cells by endocytosis, and retrograde transport through the Golgi apparatus may be important for its cytotoxicity. A previous study demonstrated that proteolytic processing of S1 occurs after PT enters mammalian cells. We sought to determine whether this proteolytic processing of S1 is necessary for PT cytotoxicity.  相似文献   

20.
Bordetella pertussis strains demonstrate polymorphism in toxin subunit S1 (PT S1) and pertactin (Prn), which belong to major protective antigens of the pathogen. Changes in the distribution of particular alleles of ptxS1 and prn genes in local B. pertussis populations have been proposed as possible factors influencing the vaccination effectiveness. We have developed a new methodology for the identification of the alleles, which eliminates the necessity of DNA sequencing. The approach is based on the evaluation of the number of sequence repeats and detection of specific nucleotides at polymorphic sites of the genes, and utilizes products of their full or partial PCR amplification. The approach is available for a laboratory with standard equipment. The total conformity of the strategy with the DNA sequencing-based approach was proved on the full set of reference strains and a group of Polish clinical isolates. The new methodology was used to investigate a collection of 120 Polish B. pertussis strains isolated from the 1960s to 2001. Similarly to findings from other countries and to earlier Polish data, the tendency to change the vaccine types of PT S1 and Prn by the antigenically different ones was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号