首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Small East African (SEA) goat are widely distributed in different agro‐ecological zones of Tanzania. We report the genetic diversity, maternal origin, and phylogenetic relationship among the 12 Tanzanian indigenous goat populations, namely Fipa, Songwe, Tanga, Pwani, Iringa, Newala, Lindi, Gogo, Pare, Maasai, Sukuma, and Ujiji, based on the mitochondrial DNA (mtDNA) D‐loop. High haplotype (H d = 0.9619–0.9945) and nucleotide (π = 0.0120–0.0162) diversities were observed from a total of 389 haplotypes. The majority of the haplotypes (n = 334) belonged to Haplogroup A which was consistent with the global scenario on the genetic pattern of maternal origin of all goat breeds in the world. Haplogroup G comprised of 45 haplotypes drawn from all populations except the Ujiji goat population while Haplogroup B with 10 haplotypes was dominated by Ujiji goats (41%). Tanzanian goats shared four haplotypes with the Kenyan goats and two with goats from South Africa, Namibia, and Mozambique. There was no sharing of haplotypes observed between individuals from Tanzanian goat populations with individuals from North or West Africa. The indigenous goats in Tanzania have high genetic diversity defined by 389 haplotypes and multiple maternal origins of haplogroup A, B, and G. There is a lot of intermixing and high genetic variation within populations which represent an abundant resource for selective breeding in the different agro‐ecological regions of the country.  相似文献   

2.
This study aimed at assessing haplotype diversity and population dynamics of three Congolese indigenous goat populations that included Kasai goat (KG), small goat (SG), and dwarf goat (DG) of the Democratic Republic of Congo (DRC). The 1169 bp dloop region of mitochondrial DNA (mtDNA) was sequenced for 339 Congolese indigenous goats. The total length of sequences was used to generate the haplotypes and evaluate their diversities, whereas the hypervariable region (HVI, 453 bp) was analyzed to define the maternal variation and the demographic dynamic. A total of 568 segregating sites that generated 192 haplotypes were observed from the entire dloop region (1169 bp dloop). Phylogenetic analyses using reference haplotypes from the six globally defined goat mtDNA haplogroups showed that all the three Congolese indigenous goat populations studied clustered into the dominant haplogroup A, as revealed by the neighbor‐joining (NJ) tree and median‐joining (MJ) network. Nine haplotypes were shared between the studied goats and goat populations from Pakistan (1 haplotype), Kenya, Ethiopia and Algeria (1 haplotype), Zimbabwe (1 haplotype), Cameroon (3 haplotypes), and Mozambique (3 haplotypes). The population pairwise analysis (FST ) indicated a weak differentiation between the Congolese indigenous goat populations. Negative and significant (p‐value <.05) values for Fu''s Fs (−20.418) and Tajima''s (−2.189) tests showed the expansion in the history of the three Congolese indigenous goat populations. These results suggest a weak differentiation and a single maternal origin for the studied goats. This information will contribute to the improvement of the management strategies and long‐term conservation of indigenous goats in DRC.  相似文献   

3.
Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold‐intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 years before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question, we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre‐Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723 km). Some of the most compelling evidence for human‐mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695 km) than wild populations sharing rare alleles (mean = 607 km; p = .014). Collectively, the genetic data suggest that long‐distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples.  相似文献   

4.
The geographical origin of watermelon (Citrullus lanatus) remains debated. While a first hypothesis suggests the center of origin to be West Africa, where the endemic sister species C. mucosospermus thrives, a second hypothesis suggests northeastern Africa where the white‐fleshed Sudanese Kordophan melon is cultivated. In this study, we infer biogeographical and haplotype genealogy for C. lanatus, C. mucosospermus, C. amarus, and C. colocynthis using noncoding cpDNA sequences (trnT‐trnL and ndhF‐rpl32 regions) from a global collection of 135 accessions. In total, we identified 38 haplotypes in C. lanatus, C. mucosospermus, C. amarus, and C. colocynthis; of these, 21 were found in Africa and 17 appear endemic to the continent. The least diverse species was C. mucosospermus (5 haplotypes) and the most diverse was C. colocynthis (16 haplotypes). Some haplotypes of C. mucosospermus were nearly exclusive to West Africa, and C. lanatus and C. mucosospermus shared haplotypes that were distinct from those of both C. amarus and C. colocynthis. The results support previous findings that revealed C. mucosospermus to be the closest relative to C. lanatus (including subsp. cordophanus). West Africa, as a center of endemism of C. mucosospermus, is an area of interest in the search of the origin of C. lanatus. This calls for further historical and phylogeographical investigations and wider collection of samples in West and northeastern Africa.  相似文献   

5.
Many Northeast (NE) Pacific fishes and invertebrates survived Pleistocene glaciations in northern refugia, but the extent that kelps survived in northern areas is uncertain. Here, we test the hypothesis that populations of sugar kelp (Saccharina latissima) persisted in the Gulf of Alaska during ice‐age maxima when the western margin of the Cordilleran ice sheet covered coastal areas around the NE Pacific Ocean. We estimated genetic diversities within and phylogeographical relationships among 14 populations along 2,800 km in the NE Pacific and Bering Sea with partial sequences of mitochondrial DNA 5′‐cytochrome oxidase subunit I (COI, bp = 624, n = 543), chloroplast DNA ribulose‐1,5‐bisphosphate carboxylase large subunit‐3′ (rbcL, bp = 735, n = 514), and 11 microsatellite loci. Concatenated sequences of rbcL and COI showed moderate levels of within‐population genetic diversity (mean h = 0.200) but substantial differences among populations (ΦST = 0.834, p < .0001). Microsatellites showed moderate levels of heterozygosity within populations (mean H E = 0.391). Kelps in the same organellar lineage tended to cluster together, regardless of geographic origins, as indicated in a principal coordinate analysis (PCoA) of microsatellite genotypes. The PCoA also showed evidence of nuclear hybridizations between co‐occurring organellar lineages. Individual admixture plots with population clusters of K = 2, 6, and 9 showed increasing complexity with considerable historical admixture between some clusters. A time‐calibrated phylogeny placed divergences between rbcL‐COI lineages at 1.4 million years at most. The time frames of mutation in the rbcL‐COI lineages and microsatellite population clusters differed among locations. The existence of ancient lineages in the Gulf of Alaska, moderate levels of genetic diversity, and the absence of departures from neutrality are consistent with northern refugia during multiple Croll‐Milankovitch climate cycles in the Pleistocene Epoch.  相似文献   

6.
Habitat fragmentation can lower migration rates and genetic connectivity among remaining populations of native species. Ducetia japonica is one of the most widespread katydids in China, but little is known about its genetic structure and phylogeographic distribution. We combined the five‐prime region of cytochrome c oxidase subunit I (COI‐5P), 11 newly developed microsatellite loci coupled with an ecological niche model (ENM) to examine the genetic diversity and population structure of D. japonica in China and beyond to Laos and Singapore. Both Bayesian inference (BI) and haplotype network methods revealed six mitochondrial COI‐5P lineages. The distribution of COI‐5P haplotypes may not demonstrate significant phylogeographic structure (N ST > G ST, p > .05). The STRUCTURE analysis based on microsatellite data also revealed six genetic clusters, but discordant with those obtained from COI‐5P haplotypes. For both COI‐5P and microsatellite data, Mantel tests revealed a significant positive correlation between geographic and genetic distances in mainland China. Bayesian skyline plot (BSP) analyses indicated that the population size of D. japonica''s three major mitochondrial COI‐5P lineages were seemingly not affected by last glacial maximum (LGM, 0.015–0.025 Mya). The ecological niche models showed that the current distribution of D. japonica was similar to the species’ distribution during the LGM period and only slightly extended in northern China. Further phylogeographic studies based on more extensive sampling are needed to identify specific locations of glacial refugia in northern China.  相似文献   

7.
We aimed to infer ancestral area and historical colonization of Lobelia columnaris in the sky islands of Bioko and Cameroon through dated phylogeny using chloroplast genomes. Specifically, we aim to answer the following questions: (1) What are the phylogenetic relationships among Bioko Island and Cameroon populations? (2) Are the older populations found in the older sky islands? We assembled novel plastomes from 20 individuals of L. columnaris from 5 mountain systems. The plastome data were explored with phylogenetic analyses using Maximum Likelihood and Bayesian Inference. The populations of L. columnaris have a monophyletic origin, subdivided into three plastomes‐geographic clades. The plastid phylogenomic results and age of the sky islands indicate that L. columnaris colonized first along with the Cameroon Volcanic Line''s young sky islands of Bioko. The crown group (1.54 Ma) split the population in Bioko and mainland Cameroon. It is possible that Bioko was the ancestral area and likely isolated during cold and dry conditions in forest refugia. Presumably, the colonization history occurred during the middle‐late Pleistocene from South Bioko''s young sky island to North Bioko and the northern old sky islands in Cameroon. Furthermore, the central depression with lowland forest between North and South Bioko is a current geographic barrier that keeps separating the populations of Bioko from each other. Also, the shallow sea channel keeps isolated the populations of Bioko and the mainland populations. The Pleistocene climatic oscillations led to the divergence of the Cameroon and Bioko populations into three clades. L. columnaris colonized the older sky islands in mainland Cameroon after establishment in Bioko''s younger sky islands. Contrary to expectations, the biogeography history was an inverse progression with respect to the age of the Afromontane sky islands.  相似文献   

8.
Phylogeographic research concerning Central China has been rarely conducted. Population genetic and phylogeography of Ziziphus jujuba var. spinosa (also called sour jujube) were investigated to improve our understanding of plant phylogeographic patterns in Central China. Single‐copy nuclear gene markers and complete chloroplast genome data were applied to 328 individuals collected from 21 natural populations of sour jujube in China. Nucleotide variation of sour jujube was relatively high (π = 0.00720, θ w = 0.00925), which resulted from the mating system and complex population dynamics. Analysis of molecular variation analysis revealed that most of the total variation was attributed to variation within populations, and a high level of genetic differentiation among populations was detected (F st = 0.197). Relatively low long‐distance dispersal capability and vitality of pollen contributed to high genetic differentiation among populations. Differences in the environmental conditions and long distance among populations further restricted gene flow. Structure clustering analysis uncovered intraspecific divergence between central and marginal populations. Migrate analysis found a high level of gene flow between these two intraspecific groups. Bayesian skyline plot detected population expansion of these two intraspecific groups. Network and phylogeny analysis of chloroplast haplotypes also found intraspecific divergence, and the divergence time was estimated to occur at about 55.86 Ma. Haplotype native to the Loess Plateau was more ancient, and multiple glacial refugia of sour jujube were found to locate at the Loess Plateau, areas adjacent to the Qinling Mountains and Tianmu Mountains. Species distribution model analysis found a typical contraction‐expansion model corresponding to the Quaternary climatic oscillations. In the future, the distribution of sour jujube may shift to high‐latitude areas. This study provides new insights for phylogeographic research of temperate plant species distributed in Central China and sets a solid foundation for the application of the scientific management strategy of Z. jujuba var. spinosa.  相似文献   

9.
The Gram‐negative bacterium Legionella pneumophila is the causative agent of Legionnaires'' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella‐containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non‐virulent and a non‐replicating, virulent/transmissive phase. Here, we show on a single‐cell level that at late stages of infection, individual motile (PflaA‐GFP‐positive) and virulent (PralF‐ and PsidC‐GFP‐positive) L. pneumophila emerge in the cluster of non‐growing bacteria within an LCV. Comparative proteomics of PflaA‐GFP‐positive and PflaA‐GFP‐negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA‐GFP‐positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi‐phasic life cycle of L. pneumophila.  相似文献   

10.
Seabirds are among the most endangered avian groups, with populations declining worldwide because of various threats, including invasive nest predators. Similar decreasing trends are occurring in the Southern Grenadines; however, the causes of decline remain uncertain, although non‐native rats have been suspected. Therefore, our objective was to determine whether non‐native rats are present on five Southern Grenadine islands that harbor seabird colonies, during May–July 2014–2017, using four methods (chew cards, tunnels, cameras, and questionnaires). Les Tantes East and Lee Rocks were the only two islands where cameras detected black rats (Rattus rattus). Although rat occupancy was low (0.125 ± 0.061) and the number of individuals and nesting attempts increased (except in 2017) for most species, the low detection probability and small number of nests prevented any inference about rat impact on seabirds. Rats might have affected seabird colonies, but other factors, such as seabird harvest, prey availability, or climatic fluctuations, could have also driven previous seabird population declines in the Southern Grenadines. However, non‐native rats are present and future research should focus on estimating their density and distribution on these and other islands of the region before an appropriate rat eradication program can be implemented.  相似文献   

11.
The drivers behind evolutionary innovations such as contrasting life histories and morphological change are central questions of evolutionary biology. However, the environmental and ecological contexts linked to evolutionary innovations are generally unclear. During the Pleistocene glacial cycles, grounded ice sheets expanded across the Southern Ocean continental shelf. Limited ice‐free areas remained, and fauna were isolated from other refugial populations. Survival in Southern Ocean refugia could present opportunities for ecological adaptation and evolutionary innovation. Here, we reconstructed the phylogeographic patterns of circum‐Antarctic brittle stars Ophionotus victoriae and Ohexactis with contrasting life histories (broadcasting vs brooding) and morphology (5 vs 6 arms). We examined the evolutionary relationship between the two species using cytochrome c oxidase subunit I (COI) data. COI data suggested that Ovictoriae is a single species (rather than a species complex) and is closely related to Ohexactis (a separate species). Since their recent divergence in the mid‐Pleistocene, Ovictoriae and Ohexactis likely persisted differently throughout glacial maxima, in deep‐sea and Antarctic island refugia, respectively. Genetic connectivity, within and between the Antarctic continental shelf and islands, was also observed and could be linked to the Antarctic Circumpolar Current and local oceanographic regimes. Signatures of a probable seascape corridor linking connectivity between the Scotia Sea and Prydz Bay are also highlighted. We suggest that survival in Antarctic island refugia was associated with increase in arm number and a switch from broadcast spawning to brooding in Ohexactis, and propose that it could be linked to environmental changes (such as salinity) associated with intensified interglacial‐glacial cycles.  相似文献   

12.
Vitamin D deficiency has been epidemiologically linked to Alzheimer''s disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non‐genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D‐sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aβ deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non‐genomic VDR/p53 complex in AD brains. Consistently, our population‐based longitudinal study also showed that dementia‐free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre‐existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.  相似文献   

13.
Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data‐independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in Escherichia coli for > 2,000 proteins over > 60 growth conditions, including nutrient limitations, non‐metabolic stresses, and non‐planktonic states. The resulting high‐quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low‐abundant proteins under various metabolic limitations, the non‐specificity of catabolic enzymes upregulated under carbon limitation, the lack of large‐scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain‐dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi‐omics studies of gene regulation and metabolic control in Ecoli.  相似文献   

14.
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow‐up study required to verify their geographic or evolutionary limits. Here, we follow‐up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species’ range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome‐wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species’ range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non‐contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.  相似文献   

15.
Fracture non‐union represents a common complication, seen in 5%–10% of all acute fractures. Despite the enhancement in scientific understanding and treatment methods, rates of fracture non‐union remain largely unchanged over the years. This systematic review investigates the biological, molecular and genetic profiles of both (i) non‐union tissue and (ii) non–union‐related tissues, and the genetic predisposition to fracture non‐union. This is crucially important as it could facilitate earlier identification and targeted treatment of high‐risk patients, along with improving our understanding on pathophysiology of fracture non‐union. Since this is an update on our previous systematic review, we searched the literature indexed in PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and the Cochrane Library using Medical Subject Heading (MeSH) or Title/Abstract words (non‐union(s), non‐union(s), human, tissue, bone morphogenic protein(s) (BMPs) and MSCs) from August 2014 (date of our previous publication) to 2 October 2021 for non‐union tissue studies, whereas no date restrictions imposed on non–union‐related tissue studies. Inclusion criteria of this systematic review are human studies investigating the characteristics and properties of non‐union tissue and non–union‐related tissues, available in full‐text English language. Limitations of this systematic review are exclusion of animal studies, the heterogeneity in the definition of non‐union and timing of tissue harvest seen in the included studies, and the search term MSC which may result in the exclusion of studies using historical terms such as ‘osteoprogenitors’ and ‘skeletal stem cells’. A total of 24 studies (non‐union tissue: n = 10; non–union‐related tissues: n = 14) met the inclusion criteria. Soft tissue interposition, bony sclerosis of fracture ends and complete obliteration of medullary canal are commonest macroscopic appearances of non‐unions. Non‐union tissue colour and surrounding fluid are two important characteristics that could be used clinically to distinguish between septic and aseptic non‐unions. Atrophic non‐unions had a predominance of endochondral bone formation and lower cellular density, when compared against hypertrophic non‐unions. Vascular tissues were present in both atrophic and hypertrophic non‐unions, with no difference in vessel density between the two. Studies have found non‐union tissue to contain biologically active MSCs with potential for osteoblastic, chondrogenic and adipogenic differentiation. Proliferative capacity of non‐union tissue MSCs was comparable to that of bone marrow MSCs. Rates of cell senescence of non‐union tissue remain inconclusive and require further investigation. There was a lower BMP expression in non‐union site and absent in the extracellular matrix, with no difference observed between atrophic and hypertrophic non‐unions. The reduced BMP‐7 gene expression and elevated levels of its inhibitors (Chordin, Noggin and Gremlin) could potentially explain impaired bone healing observed in non‐union MSCs. Expression of Dkk‐1 in osteogenic medium was higher in non‐union MSCs. Numerous genetic polymorphisms associated with fracture non‐union have been identified, with some involving the BMP and MMP pathways. Further research is required on determining the sensitivity and specificity of molecular and genetic profiling of relevant tissues as a potential screening biomarker for fracture non‐unions.  相似文献   

16.
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein‐coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non‐conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non‐conifers. It is more obvious that in non‐conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6‐ to 3.1‐fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2‐ to 3.6‐fold of non‐conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein‐coding genes due to gene function, plant habitat, or newly acquired IRs.  相似文献   

17.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

18.
Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present‐day populations. In Europe, where both Mediterranean and extra‐Mediterranean (e.g., Carpathian) refugia of the bank vole (Clethrionomys glareolus) have been identified, mtDNA indicates that extra‐Mediterranean refugia were the main source of colonization across the species range, while Mediterranean peninsulas harbor isolated, endemic lineages. Here, we critically evaluate this hypothesis using previously generated genomic data (>6,000 SNPs) for over 800 voles, focusing on genomic contributions to bank voles in central Europe, a key geographic area in considering range‐wide colonization. The results provide clear evidence that both extra‐Mediterranean (Carpathian) and Mediterranean (Spanish, Calabrian, and Balkan) refugia contributed to the ancestry and genomic diversity of bank vole populations across Europe. Few strong barriers to dispersal and frequent admixture events in central Europe have led to a prominent mid‐latitude peak in genomic diversity. Although the genomic contribution of the centrally located Carpathian refugium predominates, populations in different parts of Europe have admixed origins from Mediterranean (28%–47%) and the Carpathian (53%–72%) sources. We suggest that the admixture from Mediterranean refugia may have provisioned adaptive southern alleles to more northern populations, facilitating the end‐glacial spread of the admixed populations and contributing to increased bank vole diversity in central Europe. This study adds critical details to the complex end‐glacial colonization history of this well‐studied organism and underscores the importance of genomic data in phylogeographic interpretation.  相似文献   

19.
Several Mesoamerican crops constitute wild‐to‐domesticated complexes generated by multiple initial domestication events, and continuous gene flow among crop populations and between these populations and their wild relatives. It has been suggested that the domestication of cotton (Gossypium hirsutum) started in the northwest of the Yucatán Peninsula, from where it spread to other regions inside and outside of Mexico. We tested this hypothesis by assembling chloroplast genomes of 23 wild, landraces, and breeding lines (transgene‐introgressed and conventional). The phylogenetic analysis showed that the evolutionary history of cotton in Mexico involves multiple events of introgression and genetic divergence. From this, we conclude that Mexican landraces arose from multiple wild populations. Our results also revealed that their structural and functional chloroplast organizations had been preserved. However, genetic diversity decreases as a consequence of domestication, mainly in transgene‐introgressed (TI) individuals (π = 0.00020, 0.00001, 0.00016, 0, and 0, of wild, TI‐wild, landraces, TI‐landraces, and breeding lines, respectively). We identified homologous regions that differentiate wild from domesticated plants and indicate a relationship among the samples. A decrease in genetic diversity associated with transgene introgression in cotton was identified for the first time, and our outcomes are therefore relevant to both biosecurity and agrobiodiversity conservation.  相似文献   

20.
Although several genome‐wide association studies (GWAS) of non‐syndromic cleft lip with or without cleft palate (NSCL/P) have been reported, more novel association signals are remained to be exploited. Here, we performed an in‐depth analysis of our previously published Chinese GWAS cohort study with replication in an extra dbGaP case‐parent trios and another in‐house Nanjing cohort, and finally identified five novel significant association signals (rs11119445: 3’ of SERTAD4, P = 6.44 × 10−14; rs227227 and rs12561877: intron of SYT14, P = 5.02 × 10−13 and 2.80 × 10−11, respectively; rs643118: intron of TRAF3IP3, P = 4.45 × 10−6; rs2095293: intron of NR6A1, P = 2.98 × 10−5). The mean (standard deviation) of the weighted genetic risk score (wGRS) from these SNPs was 1.83 (0.65) for NSCL/P cases and 1.58 (0.68) for controls, respectively (P = 2.67 × 10−16). Rs643118 was identified as a shared susceptible factor of NSCL/P among Asians and Europeans, while rs227227 may contribute to the risk of NSCL/P as well as NSCPO. In addition, sertad4 knockdown zebrafish models resulted in down‐regulation of sox2 and caused oedema around the heart and mandibular deficiency, compared with control embryos. Taken together, this study has improved our understanding of the genetic susceptibility to NSCL/P and provided further clues to its aetiology in the Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号