首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

2.
《Carbohydrate research》1986,147(2):265-274
Syntheses, based on silver trifluoromethanesulfonate-promoted Koenigs-Knorr type condensations, are described of the d-glucotrioses, β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-d-Glcp and β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glcp, and the d-Glucotetraoses, β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-d-Glcp, β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-d-Glcp, and β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glcp, corresponding to the tri- and tetra-saccharide units in the linear chains of (1→4)- and (1→3)-linked β-d-glucopyranosyl residues of lichenan, and of oat and barley β-d-glucans.  相似文献   

3.
《Carbohydrate research》1986,153(1):33-43
Dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitro-α-d-galactopyranosyl chloride reacts with pyrazole in acetonitrile to give 1-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-d-lyxo-, -β-d-lyxo-, and -β-d-xylo-hexopyranosyl)pyrazole. The stereospecificity of the reaction depends on the temperature and its duration. Transformations of the type α-d-lyxo-←β-d-lyxoα β-d-xylo have been observed. The condensation products were modified at C-2 or C-3. The following derivatives have thus been obtained: 1-(α-d-galacto-, 2-acetamido-2-deoxy-α-d-galacto-, -α-d-talo-, and -α-d-xylo-hexo-pyranosyl)pyrazole, (Z)- and (E)-1-(3-azido-2,3-dideoxy-2-hydroxyimino-α- and -β-d-lyxo- and -α-d-xylo-hexopyranosyl)pyrazole, 1-(3-acetamido-2-acetoxyimino-4,6-di-O-acetyl-2,3-dideoxy-α- and -β-d-lyxo-hexopyranosyl)pyrazole, as well as (Z)- and (E)-1-(2,3-dideoxy-2-hydroxyimino-α-d-threo-hexopyranosyl)pyrazoles.  相似文献   

4.
Five new N-mono-/bis-substituted acetamide glycosides, N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (1), N-methyl-N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (2), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (3), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (4), and N-methyl-N-{4-O-[3-O-(6-O-trans-cinnamoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (5), along with one known acetamide derivative, N-methyl-N-(4-hydroxyphenethyl)-acetamide, the shared aglycone of 25, were isolated from the ethanol extract of the stems of Ephedra sinica. The structures of these new compounds were elucidated on the basis of extensive spectroscopic examination, mainly including multiple 1D and 2D NMR and HRESIMS examinations, and qualitative chemical tests. All N,N-bissubstituted acetamide glycosides were found to show the obvious rotamerism, as in the case of the isolated known N-methyl-N-(4-hydroxyphenethyl)-acetamide, under the experimental NMR conditions, with the ratios of integrated intensities between anti- and syn-rotamers always being found to be about 4 to 3.  相似文献   

5.
The structures of the peracetylated derivatives of the following alditols obtained from oligosaccharides of human milk have been established by two-dimensional, J-resolved and J-correlated, 1H-n.m.r. spectroscopy at 360 MHz: β- d-Galp-(1→3)-β- d-GlcpNAc-(1→3)-β- d-Galp-(1→4)- d-Glc-ol, α- l-Fucp-(1→2)-β- d-Galp-(1→3)-β- d-GlcpNAc-(1→3)-β- d-Galp-(1→4)- d-Glc-ol, and β- d-Galp-(1→3)-β- d-GlcpNAc-(1→3)-[β- d-Galp-(1→4)-β- d-GlcpNAc-(1→6)]-β- d-Galp-(1→4)- d-Glc-ol.  相似文献   

6.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

7.
Three glycopeptides, obtained in quantity from ovalbumin by exhaustive digestion with Pronase and purified by ion-exchange chromatography and gel filtration, had mannose-2-acetamido-2-deoxyglucose-aspartic acid ratios of 5:4:1, 6:2:1, and 5:2:1. The structures of the glycopeptides have been investigated by sequential digestion with purified exo-glycosidases, Smith degradation, and selective acetolysis, and by methylation analysis of the glycopeptides and their degradation products. The resulting data indicated the structures to be α-d-Manp-(1→6)-[α-d- Manp-(1→3)]-α-d-Manp-(1→6)-[β-d-GlcNAcp-(1→4)]-[β-d-GlcNAcp-(1→2)-α-d- Manp-(1→3)]-β-d-Manp-(1→4)-β-d-GlcNAcp-(1→4)-β-d-GlcNAcp→Asn, α-d- Manp-(1→6)-[α-d-Manp-(1→3)]-α-d-Manp-(1→6)-[α-d-Manp-(1→2)-α-d-Manp- (1→3)]-β-d-Manp-(1→4)-β-d-GlcNAcp-(1→4)-β-d-GlcNAcp→Asn, and α-d-Manp- (1→6)-[α-d-Manp-(1→3)]-α-d-Manp-(1→6)-[α-d-Manp-(1→3)]-β-d-Manp-(1→4)- β-d-GlcNAcp-(1→4)-β-d-GlcNAcp→Asn. The glycopeptides had a common-core structure consisting of five mannose and two hexosamine residues, but the two larger glycopeptides were not homologous.  相似文献   

8.
Partial hydrolysis of a larch arabino(4-O-methylglucurono)xylan afforded two series of oligouronides composed of 4-O-methyl- d-glucuronic acid and d-xylose residues. The first series included aldouronic acids up to the aldopentaouronic acid. Methylation analysis indicated that the aldopentao- and aldotetrao-uronic acids were mixtures of isomers. One aldotetraouronic acid was isolated and identified as O-β-d-Xylp-(1 → 4)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-d-Xyl. The two isomeric aldotriouronic acids were separated from each other. The acids of the second series, which were composed of two uronic acids and 2-4 d-xylose residues, were identified as follows: O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-d-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-β-d -Xylp-(1 → 4)-D-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Mec-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-D-Xyl, and O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-D-Xyl. The first three compounds were new acidic oligosaccharides. The 4-O-methyl-d-glucuronic acid in the second series was present in a larger proportion than in the first series, indicating that a large proportion of the uronic acid side-chains were located on two contiguous D-xylose residues in the backbone of the softwood xylan.  相似文献   

9.
Synthetic routes are described to the d-mannopentaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-α-d-mannopyranosyl-α-d-mannopyranoside, and the d-mannohexaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-α- d-mannopyranoside, formed in a regio- and stereo-controlled way by employing the properly protected d-mannobioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-6-O-(3,4,6-tri-O-benzyl-α-d- mannopyranosyl)-α-d-mannopyranoside as key intermediates.  相似文献   

10.
The synthesis is described of the glycotripeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L--seryl-L-nitroarginyl-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine, 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-seryl-L-nitroarginyl-L-aspart-1-oyl-(1-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and of the glycopentapeptide and glycohexapeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-threonyl-Nε-tosyl-L-lysine-(p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glycopyranosylamine and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-Nε-tosyl-L-lysyl-L-aspartic 1,4-di-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine.  相似文献   

11.
《Carbohydrate research》1986,145(2):293-306
The tetrasaccharides β-d-Glcp-(1→3)-β-d-Glcp-(1→3)-[β-d-Glcp-(1→6)]-d-Glcp, β-d-Glcp-(1→3)-[β-d-Glcp-(1→6)]-β-d-Glcp-(1→3)-d-Glcp, and β-d-Glcp-(1→6)-β-d-Glcp-(1→3)-β-d-Glcp-(1→3)-d-Glcp, corresponding to the three possible repeating-units of Schizophyllan, have been synthesised by silver trifluoromethanesulfonate-promoted Koenigs-Knorr type condensations, using 2,4,6-tri-O-acetyl-3-O-allyl-α-d-glucopyranosyl bromide as the key intermediate.  相似文献   

12.
Alkylation of benzyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside in N,Ndimethyl formamide with (R)-2-chloropropionic acid gave crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-carboxyethyl]-β-D-glucopyranoside. After hydrogenolysis of the benzyl group 4-O-[(S)-D-carboxyethyl]-D-glucose was obtained which lactonized very easily. Treatment of benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-carboxyethyl]-β-D-glucopyranoside with diazomethane gave cristalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(methoxycarbonyl)ethyl]-β-D-glucopyranoside, which was reduced with lithium aluminium hydride to crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(hydroxymethyl)ethyl]-β-D-glucopyranoside After hydrogenolysis of the benzyl groups 4-O-[(S)-1-(hydroxymethyl)ethyl]-D-glucose was obtained. A similar sequence of reactions was performed with (S)-2-chloropropionic acid.  相似文献   

13.
The seed of Virola sebifera contains besides the polyketide 1 - (2′,6′ - dihydroxyphenyl) - 11 - henylundecan - 1 - one, four neolignans: (2S, 3S, 4R) - 4 - hydroxy - 2,3 - dimethyl - 5,6 - methylenedioxy - 4 - piperonyl - 1 - tetralone and its 2-epimer, as well as (2R, 3R, 4S) - 4 - hydroxy - 6,7 - dimethoxy - 2,3 - dimethyl 4 - piperonyl - 1 - tetralone and its (2R, 3S, 4R) - dehydroxy analogue.  相似文献   

14.
Synthetic routes are discussed to the branched d-mannopentaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-α-d-mannopyranosyl-α-d-mannopyranoside and d-mannohexaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)- α-d-mannopyranoside, employing the properly benzylated d-mannobioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-3-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d- mannopyranoside as key intermediates.  相似文献   

15.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

16.
A novel tetra-acylated cyanidin 3-sophoroside-5-glucoside was isolated from the purple-violet flowers of Moricandia arvensis (L.) DC. (Family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-6-O-(trans-caffeoyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

17.
《Carbohydrate research》1986,150(1):241-263
The asparagine-linked sugar chains of human milk galactosyltansferase were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by sodium borotritiate reduction after N-acetylation, and fractionated by paper electrophoresis and by Bio-Gel P-4 column chromatography after sialidase treatment. Structural studies of each oligosaccharides by sequential exoglycosidase digestion and methylation analysis indicated that the galactosyltransferase contains bi, tri-, and probably tetra-antennary, complex-type oligosaccharides having α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-β-d-GlcpNAc-(1→4)-α-d-[Fucp-(1→6)]-d- GlcNAc as their common core. Variation is produced by the different locations and numbers of the five different outer chains: β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-d-GlcNAc, α-NeuAc-(2→6)-β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d- GlcNAc, and α-NeuAc-(2→6)-β-d-Galp-(1→4)-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)-β-d-GlcNAc.  相似文献   

18.
Five cytokinins, trans-zeatin, 9-β-d-ribofuranosyl-trans-zeatin, 9-β-d-ribofuranosyl-cis-zeatin, 6-(trans-4-O-β-d-glucopyranosyl-3-methyl-2-butenylamino)purine and 6-(trans-4-O-β-d-glucopyranosyl-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine were identified from immature seeds of Dolichos lablab.  相似文献   

19.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

20.
2-O-Benzoyl-3,4,6-tri-O-benzyl-1-O-tosyl-d-mannopyranose and 2,3,4-tri-O- benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-d-glucopyranose were allowed to react with partially blocked 2-[4-(p-toluenesulfonamido)phenyl]ethyl α-d-manno- and -gluco-pyranosides. Disaccharides having α-d-Manp-(1→2)-α-D-Manp, α-d-manp-(1→6)-α-d-Manp, α-d-Manp-(1→6)-α-d-Manp, and α-d-Glcp-(1→6)-α-d-Manp structures, and a branched trisaccharide having the structure α-d-Manp-(1→2)-[α-d-Manp-(1→6)]-α-d-Manp were synthesized. The oligosaccharides were deblocked with sodium in liquid ammonia to give glycopyranosides having a free primary aromatic amine which were converted into isothiocyanate derivatives with thiophosgene. The functionalized oligosaccharides were then coupled to bovine serum albumin to give protein conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号