首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants produce an immense variety of specialized metabolites, many of which are of high value as their bioactive properties make them useful as for instance pharmaceuticals. The compounds are often produced at low levels in the plant, and due to their complex structures, chemical synthesis may not be feasible. Here, we take advantage of the reducing equivalents generated in photosynthesis in developing an approach for producing plant bioactive natural compounds in a photosynthetic microorganism by functionally coupling a biosynthetic enzyme to photosystem I. This enables driving of the enzymatic reactions with electrons extracted from the photosynthetic electron transport chain. As a proof of concept, we have genetically fused the soluble catalytic domain of the cytochrome P450 CYP79A1, originating from the endoplasmic reticulum membranes of Sorghum bicolor, to a photosystem I subunit in the cyanobacterium Synechococcus sp. PCC 7002, thereby targeting it to the thylakoids. The engineered enzyme showed light-driven activity both in vivo and in vitro, demonstrating the possibility to achieve light-driven biosynthesis of high-value plant specialized metabolites in cyanobacteria.  相似文献   

2.
Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66 mg/L of p-hydroxyphenylacetaldoxime and 5 mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3 mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.  相似文献   

3.
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.

Lateral root emergence is regulated via systemic signaling that incorporates photosynthesis-dependent redox control and auxin biosynthesis.  相似文献   

4.
CYP102s represent a family of natural self-sufficient fusions of cytochrome P450 and cytochrome P450 reductase found in some bacteria. One member of this family, named CYP102A1 or more traditionally P450BM-3, has been widely studied as a model of human P450 cytochromes. Remarkable detail of P450 structure and function has been revealed using this highly efficient enzyme. The recent rapid expansion of microbial genome sequences has revealed many relatives of CYP102A1, but to date only two from Bacillus subtilis have been characterized. We report here the cloning and expression of CYP102A5, a new member of this family that is very closely related to CYP102A4 from Bacillus anthracis. Characterization of the substrate specificity of CYP102A5 shows that it, like the other CYP102s, will metabolize saturated and unsaturated fatty acids as well as N-acylamino acids. CYP102A5 catalyzes very fast substrate oxidation, showing one of the highest turnover rates for any P450 monooxygenase studied so far. It does so with more specificity than other CYP102s, yielding primarily ω-1 and ω-2 hydroxylated products. Measurement of the rate of electron transfer through the reductase domain reveals that it is significantly faster in CYP102A5 than in CYP102A1, providing a likely explanation for the increased monooxygenation rate. The availability of this new, very fast fusion P450 will provide a great tool for comparative structure-function studies between CYP102A5 and the other characterized CYP102s.  相似文献   

5.
Cytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s. The natural membrane-associated reductase of adrenodoxin was replaced by the soluble Escherichia coli reductase. We could demonstrate for the first time that this reductase can transfer electrons to adrenodoxin. In the first step, the electron transfer properties and the potential of this new system were investigated in vitro, and in the second step, an efficient E. coli whole-cell system using CYP264A1 from Sorangium cellulosum So ce56 was developed. It could be demonstrated that this novel redox chain leads to an initial conversion rate of 55 μM/h, which was 52 % higher compared to the 36 μM/h of the redox chain containing adrenodoxin reductase. Moreover, we optimized the whole-cell biotransformation system by a detailed investigation of the effects of different media. Finally, we are able to demonstrate that the new system is generally applicable to other cytochromes P450 by combining it with the biotechnologically important steroid hydroxylase CYP106A2 from Bacillus megaterium.  相似文献   

6.
Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an “alternative” electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways.  相似文献   

7.
CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP+ reductase (FNR): H2N-CYP175A1-Fdx-FNR-COOH (175FR) and H2N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The Vmax value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the km values of these enzymes were similar. 175RF retained 50% residual activity even at 80 °C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.  相似文献   

8.

Background

Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains.

Results

Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression.

Conclusion

CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes between a field population and established laboratory strains were shown.  相似文献   

9.
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 are heme monooxygenases that receive electrons from NADH via Arx, a [2Fe-2S] ferredoxin, and ArR, a ferredoxin reductase. These systems show fast NADH turnovers (kcat = 39–91 s−1) that are efficiently coupled to product formation. The three-dimensional structures of ArR, Arx, and CYP101D1, which form a physiological class I P450 electron transfer chain, have been resolved by x-ray crystallography. The general structural features of these proteins are similar to their counterparts in other class I systems such as putidaredoxin reductase (PdR), putidaredoxin (Pdx), and CYP101A1 of the camphor hydroxylase system from Pseudomonas putida, and adrenodoxin (Adx) of the mitochondrial steroidogenic CYP11 and CYP24A1 systems. However, significant differences in the proposed protein-protein interaction surfaces of the ferredoxin reductase, ferredoxin, and P450 enzyme are found. There are regions of positive charge on the likely interaction face of ArR and CYP101D1 and a corresponding negatively charged area on the surface of Arx. The [2Fe-2S] cluster binding loop in Arx also has a neutral, hydrophobic patch on the surface. These surface characteristics are more in common with those of Adx than Pdx. The observed structural features are consistent with the ionic strength dependence of the activity.  相似文献   

10.
Privileged ergot alkaloids (EAs) produced by the fungal genus Claviceps are used to treat a wide range of diseases. However, their use and research have been hampered by the challenging genetic engineering of Claviceps. Here we systematically refactored and rationally engineered the EA biosynthetic pathway in heterologous host Aspergillus nidulans by using a Fungal-Yeast-Shuttle-Vector protocol. The obtained strains allowed the production of diverse EAs and related intermediates, including prechanoclavine (PCC, 333.8 mg/L), chanoclavine (CC, 241.0 mg/L), agroclavine (AC, 78.7 mg/L), and festuclavine (FC, 99.2 mg/L), etc. This fungal platform also enabled the access to the methyl-oxidized EAs (MOEAs), including elymoclavine (EC), lysergic acid (LA), dihydroelysergol (DHLG), and dihydrolysergic acid (DHLA), by overexpressing a P450 enzyme CloA. Furthermore, by optimizing the P450 electron transfer (ET) pathway and using multi-copy of cloA, the titers of EC and DHLG have been improved by 17.3- and 9.4-fold, respectively. Beyond our demonstration of A. nidulans as a robust platform for EA overproduction, our study offers a proof of concept for engineering the eukaryotic P450s-contained biosynthetic pathways in a filamentous fungal host.  相似文献   

11.
We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (KD = 0.48 μM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or α-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator.  相似文献   

12.
IMMUTANS (IM) encodes a thylakoid membrane protein that has been hypothesized to act as a terminal oxidase that couples the reduction of O(2) to the oxidation of the plastoquinone (PQ) pool of the photosynthetic electron transport chain. Because IM shares sequence similarity to the stress-induced mitochondrial alternative oxidase (AOX), it has been suggested that the protein encoded by IM acts as a safety valve during the generation of excess photosynthetically generated electrons. We combined in vivo chlorophyll fluorescence quenching analyses with measurements of the redox state of P(700) to assess the capacity of IM to compete with photosystem I for intersystem electrons during steady-state photosynthesis in Arabidopsis (Arabidopsis thaliana). Comparisons were made between wild-type plants, im mutant plants, as well as transgenics in which IM protein levels had been overexpressed six (OE-6 x) and 16 (OE-16 x) times. Immunoblots indicated that IM abundance was the only major variant that we could detect between these genotypes. Overexpression of IM did not result in increased capacity to keep the PQ pool oxidized compared to either the wild type or im grown under control conditions (25 degrees C and photosynthetic photon flux density of 150 micromol photons m(-2) s(-1)). Similar results were observed either after 3-d cold stress at 5 degrees C or after full-leaf expansion at 5 degrees C and photosynthetic photon flux density of 150 micromol photons m(-2) s(-1). Furthermore, IM abundance did not enhance protection of either photosystem II or photosystem I from photoinhibition at either 25 degrees C or 5 degrees C. Our in vivo data indicate that modulation of IM expression and polypeptide accumulation does not alter the flux of intersystem electrons to P(700)(+) during steady-state photosynthesis and does not provide any significant photoprotection. In contrast to AOX1a, meta-analyses of published Arabidopsis microarray data indicated that IM expression exhibited minimal modulation in response to myriad abiotic stresses, which is consistent with our functional data. However, IM exhibited significant modulation in response to development in concert with changes in AOX1a expression. Thus, neither our functional analyses of the IM knockout and overexpression lines nor meta-analyses of gene expression support the model that IM acts as a safety valve to regulate the redox state of the PQ pool during stress and acclimation. Rather, IM appears to be strongly regulated by developmental stage of Arabidopsis.  相似文献   

13.
One of the mRNAs that accumulates during the ripening of avocado (Persea americana Mill. cv Hass) has been previously identified as a cytochrome P450 (P450) monooxygenase and the corresponding gene designated CYP71A1. In this report we demonstrate that during ripening the accumulation of antigenically detected CYP71A1 gene product (CYP71A1) correlates with increases in total P450 and two P450-dependent enzyme activities: para-chloro-N-methylaniline demethylase, and trans-cinnamic acid hydroxylase (tCAH). To determine whether both of these activities are derived from CYP71A1, we have expressed this protein in yeast (Saccharomyces cerevisiae) using a galactose-inducible yeast promoter. Following induction, the microsomal fraction of transformed yeast cells undergoes a large increase in P450 level, attributable almost exclusively to the plant CYP71A1 protein. These membranes exhibit NADPH-dependent para-chloro-N-methylaniline demethylase activity at a rate comparable to that in avocado microsomes but have no detectable tCAH. These results demonstrate both that the CYP71A1 protein is not a tCAH and that a plant P450 is fully functional upon heterologous expression in yeast. These findings also indicate that the heterologous P450 protein can interact with the yeast NADPH:P450 reductase to produce a functional complex.  相似文献   

14.
Chloroplast redox signals: how photosynthesis controls its own genes   总被引:13,自引:0,他引:13  
The photosynthetic apparatus of higher plants and algae is composed of plastid- and nuclear-encoded components, therefore the expression of photosynthesis genes needs to be highly coordinated. Expression is regulated by various factors, one of the most important of which is light. Photosynthesis functions as a sensor for such light signals, and the redox state of photosynthetic electron transport components and redox-active soluble molecules act as regulating parameters. This provides a feedback response loop in which the expression of photosynthesis genes is coupled to the function of the photosynthetic process, and highlights the dual role of photosynthesis in energy fixation and the reception of environmental information.  相似文献   

15.
Electron transport activity and absorbance changes associated with P700 were investigated in a mutant strain of Chlamydomonas reinhardi with impaired photosynthesis. This mutant strain, ac-8oa, cannot reduce NADP with electrons from either water or dye and ascorbate, but it has considerable Hill activity. The mutant strain shows none of the absorbance changes characteristic of P700. Although unable to carry out cyclic photosynthetic phosphorylation, ac-8oa is able to synthesize ATP when ferricyanide is provided as an electron acceptor.

These observations lead to the conclusion that a site for the coupling of photosynthetic phosphorylation with electron transport must exist between the 2 photochemical systems.

  相似文献   

16.
The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased Ci values and decreased Rubisco activity. Salinity decreased both the Vcmax (in vivo Rubisco activity) and Jmax (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks.  相似文献   

17.
The photosynthetic performance of two transgenic Medicago truncatula lines engineered for water deficit (WD) resistance and a non-transformed line was assessed in a growth chamber experiment in well-watered, WD and stress recovery conditions. Direct gas exchange measurements showed that the transgenic plants had lower photosynthetic rates under well-hydrated conditions when compared to the non-transformed line. Photosynthesis light curves confirmed this difference but more importantly showed a progressive change in photosynthetic behaviour with intensity of dehydration. Dehydration led to sharp decreases of maximum photosynthesis (Amax), photosynthetic apparent quantum yield (Φ) and apparent light compensation point. The recovery rates showed that all plant lines had a similar capacity to regain control photosynthetic values. Furthermore, results suggested that light was more limiting for photosynthesis than atmospheric CO2 concentration. The results are discussed in terms of the use of photosynthesis light response curves as a non-destructive and expeditious approach to select M. truncatula transformants with improved WD resistance.  相似文献   

18.
Ferredoxins are ubiquitous proteins with electron transfer activity involved in a variety of biological processes. In this work, we investigated the characteristics and function of Fdx1 from Sorangium cellulosum So ce56 by using a combination of bioinformatics and of biochemical/biophysical approaches. We were able to experimentally confirm a role of Fdx1 in the iron-sulfur cluster biosynthesis by in vitro reduction studies with cluster-loaded So ce56 IscU and by transfer studies of the cluster from the latter protein to apo-aconitase A. Moreover, we found that Fdx1 can replace mammalian adrenodoxin in supporting the activity of bovine CYP11A1. This makes S. cellulosum Fdx1 the first prokaryotic ferredoxin reported to functionally interact with this mammalian enzyme. Although the interaction with CYP11A1 is non-physiological, this is—to the best of our knowledge—the first study to experimentally prove the activity of a postulated ISC-type ferredoxin in both the ISC assembly and a cytochrome P450 system. This proves that a single ferredoxin can be structurally able to provide electrons to both cytochromes P450 and IscU and thus support different biochemical processes. Combining this finding with phylogenetic and evolutionary trace analyses led us to propose the evolution of eukaryotic mitochondrial P450-type ferredoxins and ISC-type ferredoxins from a common prokaryotic ISC-type ancestor.  相似文献   

19.
Photosynthesis is a highly integrated and regulated process which is highly sensitive to any change in environmental conditions, because it needs to balance the light energy absorbed by the photosystems with the energy consumed by metabolic sinks of the plant. Low temperatures exacerbate an imbalance between the source of energy and the metabolic sink, thus requiring adjustments of photosynthesis to maintain the balance of energy flow. Photosynthesis itself functions as a sensor of this imbalance through the redox state of photosynthetic electron-transport components and regulates photophysical, photochemical and metabolic processes in the chloroplast. Recent progress has been made in understanding how plants sense the low temperature signal. It is clear that photosynthesis interacts with other processes during cold acclimation involving crosstalk between photosynthetic redox, cold acclimation and sugar-signalling pathways to regulate plant acclimation to low temperatures.  相似文献   

20.
One challenge in the heterologous expression of microsomal cytochrome P450 monooxygenases (P450s) is fulfilling their obligatory requirement for electrons transferred from NADPH P450 reductase. We have established co-expression parameters for Papilio polyxenes CYP6B1 and house fly P450 reductase in baculovirus-infected Sf9 cells that allow for efficient expression of both components and significantly enhance metabolic turnover of this insect P450's substrates. These expression conditions have allowed us to reexamine the turnover capacities of CYP6B1 toward linear and angular furanocoumarins present in the host plants for the specialist caterpillar P. polyxenes. Coexpression of CYP6B1 and P450 reductase at equivalent viral concentrations [MOI (multiplicity of infection) ratio of 1] results in turnover rates for the linear furanocoumarins xanthotoxin and psoralen, which are increased 32-33 fold over the turnover rates obtained with CYP6B1 expressed alone. The turnover rate for the angular furanocoumarin angelicin is also significantly increased to 4.76 nmol/min/nmol P450 compared to its barely detectable level obtained with CYP6B1 expressed alone. Substrate binding analyses indicate that all three of these compounds elicit typical type I binding spectra but with varying magnitudes and affinities that are indicative of each substrate's effectiveness at coordinating with the heme iron. The relative proportions of high spin state generated with these substrates are consistent with CYP6B1 metabolizing these furanocoumarins in the rank order xanthotoxin>psoralen>angelicin. These differential activities for CYP6B1 suggest that it may have been an ancient participant in the coevolutionary arms race between papilionid butterflies and their apiaceous host plants. Due to its ability to handle a range of furanocoumarin structures, CYP6B1 may have contributed to P. polyxenes' early colonization of linear furanocoumarin-containing plants and to its subsequent colonization of angular furanocoumarin-containing plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号