首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Genomics》2023,115(3):110600
The taxonomy of Pseudomonas has been extensively studied, yet the determination of species is currently difficult because of recent taxonomic changes and the lack of complete genomic sequence data. We isolated a bacterium causing a leaf spot disease on hibiscus (Hibiscus rosa-sinensis). Whole genome sequencing revealed similarity to Pseudomonas amygdali pv. tabaci and pv. lachrymans. The genome of this isolate (referred to as P. amygdali 35–1) shared 4987 genes with P. amygdali pv. hibisci, but possessed 204 unique genes and contained gene clusters encoding putative secondary metabolites and copper resistance determinants. We predicted this isolate's type III secretion effector (T3SE) repertoire and identified 64 putative T3SEs, some of which are present in other P. amygdali pv. hibisci strains. Assays showed that the isolate was resistant to copper at a concentration of 1.6 mM. This study provides an improved understanding of the genomic relatedness and diversity of the P. amygdali species.  相似文献   

2.
Pseudomonas amygdali pv. lachrymans is currently of important plant pathogenic bacteria that causes cucumber angular leaf spot worldwide. The pathogen has been studied for its roles in pathogenicity and plant inheritance resistance. To further delineate traits critical to virulence, invasion and survival in the phyllosphere, we reported the first complete genome of P. amygdali pv. lachrymans NM002. Analysis of the whole genome in comparison with three closely-related representative pathovars of P. syringae identified the conservation of virulence genes, including flagella and chemotaxis, quorum-sensing systems, two-component systems, and lipopolysaccharide and antiphagocytosis. It also revealed differences of invasion determinants, such as type III effectors, phytotoxin (coronatine, syringomycin and phaseolotoxin) and cell wall-degrading enzyme, which may contribute to infectivity. The aim of this study was to derive genomic information that would reveal the probable molecular mechanisms underlying the virulence, infectivity and provide a better understanding of the pathogenesis of the P. syringae pathovars.  相似文献   

3.
In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP)-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP- and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC) sequences failed to produce clear banding patterns in this study.  相似文献   

4.
The 16S-23S ribosomal internal transcribed spacer (ITS1) is often used as a subspecies or strain-specific molecular marker for various kinds of bacteria. However, the presence of different copies of ITS1 within a single genome has been reported. Such mosaicism may influence correct typing of many bacteria and therefore knowledge about exact configuration of this region in a particular genome is essential. In order to screen the variability of ITS1 among and within Pseudomonas syringae genomes, an oligonucleotide microarray targeting different configurations of ITS1 was developed. The microarray revealed seven distinct variants in 13 pathovars tested and detected mosaicism within the genomes of P. syringae pv. coronafaciens, pisi, syringae and tabaci. In addition, the findings presented here challenge the using of rRNA analysis for pathovar and strain determination.  相似文献   

5.
Pseudomonas syringae are differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities. To understand its pathogenicity differentiation and the evolutionary mechanisms of pathogenicity-related genes, phylogenetic analyses were conducted using 56 strains belonging to 19 pathovars. gyrB and rpoD were adopted as the index genes to determine the course of bacterial genome evolution, and hrpL and hrpS were selected as the representatives of the pathogenicity-related genes located on the genome (chromosome). Based on these data, NJ, MP, and ML phylogenetic trees were constructed, and thus 3 trees for each gene and 12 gene trees in total were obtained, all of which showed three distinct monophyletic groups: Groups 1, 2 and 3. The observation that the same set of OTUs constitute each group in all four genes suggests that these genes had not experienced any intergroup horizontal gene transfer within P. syringae but have been stable on and evolved along with the P. syringae genome. These four index genes were then compared with another pathogenicity-related gene, argK (the phaseolotoxin-resistant ornithine carbamoyltransferase gene, which exists within the argK–tox gene cluster). All 13 strains of pv. phaseolicola and pv. actinidiae used had been confirmed to produce phaseolotoxin and to have argK, whose sequences were completely identical, without a single synonymous substitution among the strains used (Sawada et al. 1997a). On the other hand, argK were not present on the genomes of the other 43 strains used other than pv. actinidiae and pv. phaseolicola. Thus, the productivity of phaseolotoxin and the possession of the argK gene were shown at only two points on the phylogenetic tree: Group 1 (pv. actinidiae) and Group 3 (pv. phaseolicola). A t test between these two pathovars for the synonymous distances of argK and the tandemly combined sequence of the four index genes showed a high significance, suggesting that the argK gene (or argK–tox gene cluster) experienced horizontal gene transfer and expanded its distribution over two pathovars after the pathovars had separated, thus showing a base substitution pattern extremely different from that of the noncluster region of the genome. Received: 18 January 1999 / Accepted: 25 May 1999  相似文献   

6.
Phytopathogenic Pseudomonas syringae is subdivided into about 50 pathovars due to their conspicuous differentiation with regard to pathogenicity. Based on the results of a phylogenetic analysis of four genes (gyrB, rpoD, hrpL, and hrpS), Sawada et al. (1999) showed that the ancestor of P. syringae had diverged into at least three monophyletic groups during its evolution. Physical maps of the genomes of representative strains of these three groups were constructed, which revealed that each strain had five rrn operons which existed on one circular genome. The fact that the structure and size of genomes vary greatly depending on the pathovar shows that P. syringae genomes are quite rich in plasticity and that they have undergone large-scale genomic rearrangements. Analyses of the codon usage and the GC content at the codon third position, in conjunction with phylogenomic analyses, showed that the gene cluster involved in phaseolotoxin synthesis (argK–tox cluster) expanded its distribution by conducting horizontal transfer onto the genomes of two P. syringae pathovars (pv. actinidiae and pv. phaseolicola) from bacterial species distantly related to P. syringae and that its acquisition was quite recent (i.e., after the ancestor of P. syringae diverged into the respective pathovars). Furthermore, the results of a detailed analysis of argK [an anabolic ornithine carbamoyltransferase (anabolic OCTase) gene], which is present within the argK–tox cluster, revealed the plausible process of generation of an unusual composition of the OCTase genes on the genomes of these two phaseolotoxin-producing pathovars: a catabolic OCTase gene (equivalent to the orthologue of arcB of P. aeruginosa) and an anabolic OCTase gene (argF), which must have been formed by gene duplication, have first been present on the genome of the ancestor of P. syringae; the catabolic OCTase gene has been deleted; the ancestor has diverged into the respective pathovars; the foreign-originated argK–tox cluster has horizontally transferred onto the genomes of pv. actinidiae and pv. phaseolicola; and hence two copies of only the anabolic OCTase genes (argK and argF) came to exist on the genomes of these two pathovars. Thus, the horizontal gene transfer and the genomic rearrangement were proven to have played an important role in the pathogenic differentiation and diversification of P. syringae. Received: 22 May 2001 / Accepted: 26 September 2001  相似文献   

7.
Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.  相似文献   

8.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1,040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

9.
The complete genome sequence of Bacillus amyloliquefaciens type strain DSM7T is presented. A comparative analysis between the genome sequences of the plant associated strain FZB42 (Chen et al., 2007) with the genome of B. amyloliquefaciens DSM7T revealed obvious differences in the variable part of the genomes, whilst the core genomes were found to be very similar. The strains FZB42 and DSM7T have in common 3345 genes (CDS) in their core genomes; whilst 547 and 344 CDS were found to be unique in DSM7T and FZB42, respectively. The core genome shared by both strains exhibited 97.89% identity on amino acid level. The number of genes representing the core genome of the strains FZB42, DSM7T, and Bacillus subtilis DSM10T was calculated as being 3098 and their identity was 92.25%. The 3,980,199 bp genome of DSM7T contains numerous genomic islands (GI) detected by different methods. Many of them were located in vicinity of tRNA, glnA, and glmS gene copies. In contrast to FZB42, but similar to B. subtilis DSM10T, the GI were enriched in prophage sequences and often harbored transposases, integrases and recombinases. Compared to FZB42, B. amyloliquefaciens DSM7T possessed a reduced potential to non-ribosomally synthesize secondary metabolites with antibacterial and/or antifungal action. B. amyloliquefaciens DSM7T did not produce the polyketides difficidin and macrolactin and was impaired in its ability to produce lipopeptides other than surfactin. Differences established within the variable part of the genomes, justify our proposal to discriminate the plant-associated ecotype represented by FZB42 from the group of type strain related B. amyloliquefaciens soil bacteria.  相似文献   

10.
Pseudomonas syringae pv. panici is a phytopathogenic bacterium causing brown stripe disease in economically important crops worldwide. Here, we announce the draft genome sequence of Pseudomonas syringae pv. panici LMG2367 to provide further valuable insights for comparison of the pathovars among species Pseudomonas syringae.  相似文献   

11.
Pseudomonas savastanoi pv. savastanoi strains harbor native plasmids belonging to the pPT23A plasmid family (PFPs) which are detected in all pathovars of the related species Pseudomonas syringae examined and contribute to the ecological and pathogenic fitness of their host. However, there is a general lack of information about the gene content of P. savastanoi pv. savastanoi plasmids and their role in the interaction of this pathogen with olive plants. We designed a DNA macroarray containing 135 plasmid-borne P. syringae genes to conduct a global genetic analysis of 32 plasmids obtained from 10 P. savastanoi pv. savastanoi strains. Hybridization results revealed that the number of PFPs per strain varied from one to four. Additionally, most strains contained at least one plasmid (designated non-PFP) that did not hybridize to the repA gene of pPT23A. Only three PFPs contained genes involved in the biosynthesis of the virulence factor indole-3-acetic acid (iaaM, iaaH, and iaaL). In contrast, ptz, a gene involved in the biosynthesis of cytokinins, was found in five PFPs and one non-PFP. Genes encoding a type IV secretion system (T4SS), type IVA, were found in both PFPs and non-PFPs; however, type IVB genes were found only on PFPs. Nine plasmids encoded both T4SSs, whereas seven other plasmids carried none of these genes. Most PFPs and non-PFPs hybridized to at least one putative type III secretion system effector gene and to a variety of additional genes encoding known P. syringae virulence factors and one or more insertion sequence transposase genes. These results indicate that non-PFPs may contribute to the virulence and fitness of the P. savastanoi pv. savastanoi host. The overall gene content of P. savastanoi pv. savastanoi plasmids, with their repeated information, mosaic arrangement, and insertion sequences, suggests a possible role in adaptation to a changing environment.  相似文献   

12.
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava.  相似文献   

13.
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.  相似文献   

14.
Variations in the outer membrane proteins (OMPs) and lipopolysaccharides (LPSs) of 54 isolates belonging to 16 different pathovars of Xanthomonas campestris were characterized. OMP samples prepared by sarcosyl extraction of cell walls and LPS samples prepared by proteinase K treatment of sonicated cells were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 4 M urea. In general, the OMP and LPS profiles within each pathovar were very similar but different from the profiles of other pathovars. Heterogeneity in OMP and LPS profiles was observed within X. campestris pv. campestris, X. campestris pv. translucens, and X. campestris pv. vesicatoria. LPSs were isolated from six X. campestris pathovars, which fell into two major groups on the basis of O antigenicity. The O antigens of X. campestris pv. begoniae, X. campestris pv. graminis, and X. campestris pv. translucens cross-reacted with each other; the other group consisted of X. campestris pv. campestris, X. campestris pv. pelargonii, and X. campestris pv. vesicatoria. A chemical analysis revealed a significant difference between the compositions of the neutral sugars of the LPSs of those two groups; the LPSs of the first group contained xylose and a 6-deoxy-3-O-methyl hexose, whereas the LPSs of the other group lacked both sugars.  相似文献   

15.

Background

The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans.

Results

We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains.

Conclusions

Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0505-0) contains supplementary material, which is available to authorized users.  相似文献   

16.
Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.  相似文献   

17.
18.
Xanthomonas campestris strains that cause disease in citrus were compared by restriction endonuclease analysis of DNA fragments separated by pulsed-field gel electrophoresis and by DNA reassociation. Strains of X. campestris pv. citrumelo, which cause citrus bacterial spot, were, on average, 88% related to each other by DNA reassociation, although these strains exhibited diverse restriction digest patterns. In contrast, strains of X. campestris pv. citri groups A and B, which cause canker A and canker B, respectively, had relatively homogeneous restriction digest patterns. The groups of strains causing these three different citrus diseases were examined by DNA reassociation and were found to be from 55 to 63% related to one another. Several pathovars of X. campestris, previously shown to cause weakly aggressive symptoms on citrus, ranged from 83 to 90% similar to X. campestris pv. citrumelo by DNA reassociation. The type strain of X. campestris pv. campestris ranged from 30 to 40% similar in DNA reassociation experiments to strains of X. campestris pv. citrumelo and X. campestris pv. citri groups A and B. Whereas DNA reassociation quantified the difference between relatively unrelated groups of bacterial strains, restriction endonuclease analysis distinguished between closely related strains.  相似文献   

19.
Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.  相似文献   

20.
Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号