首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citronella oil is the main product of Java citronella grass (Cymbopogon winterianus Jowitt) rich in geraniol and citronellol, widely used in mosquito repellents and perfumeries. The age of the plant plays a key role in oil composition and its yield such that young leaves have lesser oil content than the mature leaves. Also, a remarkable difference between fresh and dried leaves regarding oil yield is observed. The various methods of extracting essential oils from citronella grass with respect to yield (%) were studied. Average percent yield in the manual extraction and hydro-distillation procedure was 0.8 and 1 % respectively, which was better as compared to steam distilled oil (0.7 %). The chromatographic analysis of essential oils with respect to standards geraniol and citronellol were studied by high performance thin layer chromatography (HPTLC) with n-hexane and ethyl acetate (3:2) as mobile phase followed by its separation on plates. The developed plates showed geraniol, citronellol and citronellal as major bands. The analysis of all extracted oil samples by means of electrospray ionization-mass spectrometry (ESI-MS) in the positive ion mode showed rapid mass fingerprints of constituents present in the samples according to the observed mass of standards. Furthermore, the analysis of vibrational spectra was accomplished with Fourier transform infra-red spectroscopy (FTIR) specifying all the functional groups as major peaks confirming all of them as monoterpene alcohols with conjugated double bonds. Thus, HPTLC, ESI-MS and FTIR studies evidenced that the two essential oil components were majorly present in the methanol extract suggesting methanol as a good extractant in the manual extraction process.  相似文献   

2.
Cymbopogon nardus L. could be propagated via tissue culture using axillary buds as explants. The aseptic bud explants obtained using double sterilization methods produced stunted abnormal multiple shoots when they were cultured on Murashige and Skoog medium (MS) supplemented with 1.0 mg L-1 or 2.0 mg L-1 benzyladenine (BA). Stunted shoots that cultured on MS + 1.0 mg L-1 BA + 1.0 mg L-1 N6-isopentenyl-adenine (2iP) could induce elongation of shoots from about 60% of the stunted shoots. Normal multiple shoots could be induced at the highest (19.7 shoots per bud) from the bud explants within six weeks when cultured on proliferation medium consisted of MS supplemented with 0.3 mg L-1 BA and 0.1 mg L-1 indole-3-butyric acid (IBA). The separated individual shoot produced roots when transferred to basic MS solid medium. The essential oils that were contained in the mature plants namely citronellal, geraniol and citronellol were also found in thein vitro C. nardus plantlets. Citronellal was the main essential oil component in the matured plants while geraniol was the main component in thein vitro plantlets.  相似文献   

3.
Summary Incubation of acetates of geraniol, citronellol and linalool with Aspergillus niger resulted in their hydrolysis to corresponding alcohols which were further hydroxylated to their respective 8-hydroxy derivatives. In the case of linalyl acetate, besides linalool and 8-hydroxylinalool, small amounts of geraniol and -terpineol were also formed. Microsomes (105 000xg sediment) prepared from induced cells of A. niger were found to convert (1-3H)citronellol to 8-hydroxy citronellol in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.6.  相似文献   

4.
Bacteria, yeasts and filamentous fungi were screened for enantio-specific reduction of the α, β-unsaturated carbon bond in citral to produce citronellal. While a traditional aqueous screening system revealed only Zymomonas mobilis as positive, citronellal was produced in an aqueous/organic two liquid phase system by 11 of the 46 tested strains, which demonstrates the relevance of applying two-phase systems to screening strategies. Z. mobilis and Citrobacter freundii formed 1 mM citronellal in 3 h in the presence of a NADPH regenerating system and 20% (v/v) toluene. In comparison to these bacteria, the eukaryotic strains showed at least five-fold lower citral reductase activities. The bacterial strains produced preferentially the (S)-enantiomer of citronellal with e.e. values of >99% for Z. mobilis and 75% for Citrobacter freundii. In contrast the yeasts produced preferentially (R)-citronellal, i.e. Candida rugosa with an enantiomeric excess value of more than 98%. Many strains formed alcoholic by-products, viz. geraniol, nerol and citronellol. For Z. mobilis the production of these alcohols was suppressed in the presence of various organic solvents, e.g. toluene, and further decreased after EDTA addition.  相似文献   

5.
Pseudomonas aeruginosa W51D used citronellol (3,7-dimethyl-6-octen-1-ol) as sole source of carbon and oxidized it to citronellal, citronellic acid and finally to geranic acid. A mutant derived from this strain was isolated as unable to degrade citronellol and had diminished (93%) citronellal dehydrogenase activity.  相似文献   

6.
Anand Akhila 《Phytochemistry》1985,24(11):2585-2587
Use of [14C,3H]-labelled precursors revealed that leaf blades of Cymbopogon flexuosus converted geraniol (3,7-dimethylocta-trans-2,6-diene-1-ol) into citral-trans with loss of pro-(1S) hydrogen whereas nerol lost the pro-(1R) hydrogen while being converted into citral-cis. Secondly, the citral-trans is converted into citral-cis and vice versa and there is no separate route for the biosynthesis of either of the two aldehyde isomers.  相似文献   

7.
Monoterpenoids and sesquiterpene hydrocarbons of Abies balsamea cortical oleoresin (Canada balsam) were analyzed by a combination of chromatographic and spectroscopic methods. Monoterpene hydrocarbons (21%) were composed of β-pinene, α-pinene, β-phellandrene, limonene, 3-carene, myrcene and camphene (listed in order of decreasing percentages), and oxygenated monoterpenes (0·4%) contained 4,4-dimethyl-2-cyclohepten-1-one, linalool, bornyl acetate, methylthymol, citronellyl acetate, α-terpineol, piperitone, citronellal, borneol, citronellol, two unknowns, and geraniol. From the sesquiterpene hydrocarbon fraction (1·1%) were isolated: longifolene, β-bisabolene, longipinene, an unknown, sativene, cyclosativene, cis-α-bisabolene, β-himachalene, α-himachalene, β-caryophyllene, γ-humulene, farnesene, longicyclene, an unknown, and β-selinene. Both himachalenes have been identified for the first time in Pinaceae outside of Cedrus; their co-occurrence with γ-humulene, longifolene, longipinene and longicyclene supports the biosynthetic mechanism by which all of these compounds arise through initial 1/11 cyclization of tran-cis-farnesylphosphate.  相似文献   

8.
Microbial production of monoterpenes has attracted increasing attention in recent years. Up to date, there are only few reports on the biosynthesis of the monoterpene alcohol citronellol that is widely used as fragrant and pharmaceutical intermediates. Here, we engineered Saccharomyces cerevisiae by employing a “push-pull-restrain” strategy to improve citronellol production based on the reduction of geraniol. Starting from a engineered geraniol-producing strain, different reductases were investigated and the best performing iridoid synthase from Catharanthus roseus (CrIS) resulted in 285.89 mg/L enantiomerically pure S-citronellol in shake flasks. Geranyl diphosphate (GPP), the most important precursor for monoterpenes, was enhanced by replacing the wild farnesyl diphosphate synthase (Erg20) with the mutant Erg20F96W, increasing the citronellol titer to 406.01 mg/L without negative influence on cell growth. Moreover, we employed synthetic protein scaffolds and protein fusion to colocalize four sequential enzymes to achieve better substrate channeling along with the deletion of an intermediate degradation pathway gene ATF1, which elevated the citronellol titer to 972.02 mg/L with the proportion of 97.8% of total monoterpenes in YPD medium. Finally, the engineered strain with complemented auxotrophic markers produced 8.30 g/L of citronellol by fed-batch fermentation, which was the highest citronellol titer reported to date. The multi-level engineering strategies developed here demonstrate the potential of monoterpenes overproduction in yeast, which can serve as a generally applicable platform for overproduction of other monoterpenes.  相似文献   

9.
10.
An organism identified as Pseudomonas putida was found to utilize citronellol or geraniol as the sole carbon and energy source. The ability to degrade these acyclic isoprenols was associated with pSRQ50, a 50-megadalton transmissible plasmid.  相似文献   

11.
The effect of four monoterpenes ‐ citronellol, citronellal, cineole and linalool ‐ on the germination, growth and physiology of Cassia occidentalis was investigated. All four monoterpenes reduced germination of C. occidentalis seeds but to varying extents. Citronellal and linalool completely inhibited germination beyond the concentrations of 55 and 110 μM, respectively, whereas in response to treatment of citronellol no germination was observed beyond 330 μM. Further, the growth of seedlings, measured in terms of seedling length and biomass, was also adversely affected. A reduction in chlorophyll content of the cotyledonary leaves of C. occidentalis was also noticed, indicating an adverse effect on photosynthesis. Likewise, respiratory ability of growing seeds was also impaired in response to all four monoterpenes, clearly indicating that monoterpenes affect energy metabolism. On the basis of overall phytotoxicity, potency of monoterpenes was in the order of citronellal > linalool > citronellol > cineole. The results from this study suggest that both citronellal and linalool possess strong phytotoxic potential and can thus serve as lead molecules for the synthesis of bioherbicides.  相似文献   

12.
Ceratocystis moniliformis produced and excreted monoterpenes when grown on potato-dextrose broth. Geraniol, nerol, citronellol, linalol, α-terpineol, geranial and neral were identified by GC-MS. Their production commenced with the depletion of nitrogen in the growth medium and their combined concentration peaked at about 50 μg/ml on the 5th day of growth. The pathway for the biosynthesis of the identified monoterpenes was studied by supplying the radioactive precursors mevalonic acid-[2-14C], l-leucine-[4,5-3H(N)], and acetate- [2-14C] to C. moniliformis. For each precursor, the extent of incorporation into the above monoterpenes and the distribution of radioactivity in geraniol was determined. It was concluded that monoterpenes were formed via the mevalonate pathway, previously established for higher terpenes in other organisms. This represents the first information available on the biosynthetic pathway for free monoterpenes in a microbial system.  相似文献   

13.
Gas chromatography of citronella oil showed that the Ceylon variety (Lenabatu) contained large amounts of monoterpene hydrocarbons, while the Java variety (Mahapengiri) contained only small amounts, mainly limonene. Both types contained comparable amounts of geraniol, and the Java type more of citronellol and citronellal. In addition the Ceylon type contained tricyclene, methyl eugenol, methyl isoeugenol, eugenol and l-borneol. The GLC profiles enable the identification of the type of oil and the detection of kerosene as a possible adulterant. The variety that grows wild in Ceylon (Mana) was quite different to both cultivated types.  相似文献   

14.
Partial degradations of (+)-isothujone biosynthesised in Tanacetum vulgare after feeding IPP-[4-14C], DMAPP-[4-14C] or 3,3-dimethylacrylate-[Me-14C], and of geraniol and (+)-pulegone formed in Pelargonium graveolens and Mentha pulegium respectively after uptake of 3,3-dimethylacrylate-[Me-14C], indicated that none of these metabolites was a direct source of the part of the monoterpene skeleton derived hypothetically from DMAPP. Uptake of glucose-[U14C] into P. graveolens led, in contrast, to both IPP and DMAPP-derived moieties of geraniol being extensively labelled. Feeding of l-valine-[U-14C] and l-leucine-[U-14C] to all three plants resulted in negligible incorporation of tracer into monoterpenes. A soluble enzyme system prepared from foliage of T. vulgare that had been exposed to CO2-[14C] for 20 days converted isotopically-normal IPP into GPP with the DMAPP-derived portion containing essentially all (>98%) of the radioactivity present. These observations and those previously obtained from feeding experiments with other [14C]-labelled precursors on the same plant species are consistent with the occurrence of two metabolic pools of intermediates for monoterpene biosynthesis, one of which is probably protein-bonded.  相似文献   

15.
The effect of 20 essential oil constituents on Aspergillus flavus growth and aflatoxin production was tested at the level of 1000 ppm. Some of the tested oils exhibited inhibitory effects on fungal growth and toxin formation. Five oils, namely geraniol, nerol and citronellol (aliphatic oils), cinnamaldehyde (aromatic aldehyde) and thymol (phenolic ketone), completely suppressed growth and aflatoxin synthesis. Trials for determining the minimum inhibitory concentration (MIC) of these oils revealed that geraniol, nerol and citronellol were effective at 500 ppm, while thymol and cinnamaldehyde were highly effective at doses as low as 250 and 200 ppm, respectively. It was observed that citral, citronellal and eugenol prevented fungal growth and toxin formation for up to 8 d. However, after 15 d of incubation, toxin production was greater than the controls.  相似文献   

16.
Nepeta is a perennial herbal plant that belongs to the Lamiaceae mint family. Nepta has different species that are widely used in the agriculture, medicine, and pharmaceutical industries. A field experiment was conducted in 2015 and 2016 to determine the effects of potassium humate foliar application [0 (control) and 400 ppm] on growth, essential oil and constituents of three Nepta species [Nepeta cataria (catnip), Nepeta cataria var. citriodora (lemon catnip), and Nepeta grandiflora (giant catmint)] under Egyptian conditions. In all three species, the application of potassium humate increased growth indicators, essential oil content (%) and yield (mL/plant), and flavonoids in each of the two harvests. However, the height of giant catmint was significantly higher than that of lemon catnip, which was higher than that of catnip. Lemon catnip that received potassium humate and harvested second gave the highest essential oil content and yield. The major constituents were geraniol and nepetalactone in catnip; citronellol and geraniol in lemon catnip; and o-cymene, c-terpinene, p-cymene and carvacrol in giant catmint. The highest p-cymene in giant catmint, citronellol in lemon catnip, and geraniol in catnip were obtained from the application of potassium humate, while the highest o-cymene, c-terpinene and carvacrol in giant catmint, geraniol in lemon catnip, and nepetalactone in catnip were obtained from control plants. This study demonstrated the variations among species of nepeta, and how they respond to the application of potassium humate. The findings of this study can guide the customization of potassium humate applications to the three species for achieving desired growth and essential oil production outcomes.  相似文献   

17.
Chloroperoxidase (CPO) from Caldariomyces fumago was analysed for its ability to oxidize ten different monoterpenes with hydrogen peroxide as oxidant. In the absence of halide ions geraniol and, to a lesser extent, citronellol and nerol were converted into the corresponding aldehydes, whereas terpene hydrocarbons did not serve as substrates under these conditions. In the presence of chloride, bromide and iodide ions, every terpene tested was converted into one or more products. (1S)-(+)-3-carene was chosen as a model substrate for the CPO-catalysed conversion of terpenes in the presence of sodium halides. With chloride, bromide and iodide, the reaction products were the respective (1S,3R,4R,6R)-4-halo-3,7,7-trimethyl-bicyclo[4.1.0]-heptane-3-ols, as identified by 1H and 13C nuclear magnetic resonance. These product formations turned out to be strictly regio- and stereoselective and proceeded very rapidly and almost quantitatively. Initial specific activities of halohydrin formation increased from 4.22 U mg−1 with chloride to 12.22 U mg−1 with bromide and 37.11 U mg−1 with iodide as the respective halide ion. These results represent the first examples of the application of CPO as a highly efficient biocatalyst for monoterpene functionalization. This is a promising strategy for ‘green’ terpene chemistry overcoming drawbacks usually associated with cofactor-dependent oxygenases, whole-cell biocatalysts and conventional chemical methods used for terpene conversions.  相似文献   

18.
Five essential oils and nine of their components were compared to diethyl toluamide (DEET) for their repellent activity against the human body louse, Pediculus humanus humanus. The absolute or intrinsic repellency of the compounds was tested by applying the repellent to corduroy patches and comparing them with untreated patches. It was found that the most effective repellents were DEET and citronella, whose activity lasted at least 29 days. The activity of rosemary lasted at least 18 days and that of eucalyptus more than 8 days. The repellent activity of the oil components such as citronellal and geraniol lasted more than 15 and 8 days, respectively. DEET remained effective at a dilution of 1:32, geraniol at 1:8, citronella at 1:4 and rosemary and citronellal at 1:1. The comparative or standard repellency of the candidate repellents was examined with the aid of a new screening technique using hairs treated with ammonium bicarbonate which is attractive to lice. Using this technique it could be shown that the repellent activity of citronella and geraniol lasted 2 days and that of rosemary and citronellal for only one day. DEET was active for less than one day. Serial dilutions of these substances also revealed that citronella was the most potent repellent for lice, followed by citronellal, rosemary, geraniol and DEET. The differences however, were not significant.  相似文献   

19.
Cell-free extracts from leaves of Tanacetum vulgare synthesised geraniol and nerol (3,7-dimethylocta-trans-2-ene-1-ol and its cis isomer) in up to 11·9 and 2·4% total yields from IPP-[4-14C] and MVA-[2-14C] respectively. Optimum preparations were obtained from plant material just before the onset of flowering. The ratio of the monoterpenols varied 28-fold for different preparations under conditions where these products or their phosphate esters were not interconverted. Similar extracts incorporated α-terpineol-[14C] and terpinen-4-ol-[14C] (p-menth-1-en-8- and -4-ol respectively) in 0·05 to 2·2% yields into a compound tentatively identified as isothujone (trans-thujan-3-one), and preparations from flowerheads converted IPP-[4-14C] in 2·7% yield into geranyl and neryl β-d-glucosides. Inhibitors of IPP-isomerase had little effect on the incorporation of IPP into the monoterpenols in cell-free systems from which endogenous compounds of low molecular-weight had been removed. The inference that a pool of protein-bonded DMAPP or its biogenetic equivalent was present was supported by the demonstration that geraniol and nerol biosynthesised in the absence of the inhibitors were predominantly (65 to 100%) labelled in the moiety derived from IPP.  相似文献   

20.
Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non‐catalytic small subunit (GPPS‐SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS‐SSU was over‐expressed in tomato fruits under the control of the fruit ripening‐specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co‐expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS‐SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co‐expression of snapdragon GPPS‐SSU with the O. basilicum α–zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui‐ and monoterpene synthase activities resulted in increased levels of ZIS‐derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re‐direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号