首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

2.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

3.
Acetyl-CoA carboxylase, the rate-limiting enzyme in the biogenesis of long-chain fatty acids, is regulated by phosphorylation and dephosphorylation. The major phosphorylation sites that affect carboxylase activity and the specific protein kinases responsible for phosphorylation of different sites have been identified. A form of acetyl-CoA carboxylase that is independent of citrate for activity occurs in vivo. This active form of carboxylase becomes citrate-dependent upon phosphorylation under conditions of reduced lipogenesis. Therefore, phosphorylation-dephosphorylation of acetyl-CoA carboxylase is the enzyme's primary short-term regulatory mechanism; this control mechanism together with cellular metabolites such as CoA, citrate, and palmitoyl-CoA serves to fine-tune the synthesis of long-chain fatty acids under different physiological conditions.  相似文献   

4.
The Saccharomyces cerevisiae gene, HFA1, encodes a >250-kDa protein, which is required for mitochondrial function. Hfa1p exhibits 72% overall sequence similarity (54% identity) to ACC1-encoded yeast cytoplasmic acetyl-CoA carboxylase. Nevertheless, HFA1 and ACC1 functions are not overlapping because mutants of the two genes have different phenotypes and do not complement each other. Whereas ACC1 is involved in cytoplasmic fatty acid synthesis, the phenotype of hfa1Delta disruptants resembles that of mitochondrial fatty-acid synthase mutants. They fail to grow on lactate or glycerol, and the mitochondrial cofactor, lipoic acid, is reduced to <10% of its normal cellular concentration. Other than Acc1p, the N-terminal sequence of Hfa1p comprises a canonical mitochondrial targeting signal together with a matrix protease cleavage site. Accordingly, the HFA1-encoded protein was specifically assigned by Western blotting of appropriate cell fractions to the mitochondrial compartment. Removal of the mitochondrial targeting sequence abolished the competence of HFA1 DNA to complement hfal null mutants. Conversely and in contrast to the intact HFA1 sequence, the signal sequence-free HFA1 gene complemented the mutational loss of cytoplasmic acetyl-CoA carboxylase. Expression of HFA1 under the control of the ACC1 promoter restored cellular ACC activity in ACC1-defective yeast mutants to wild type levels. From this finding, it is concluded that HFA1 encodes a specific mitochondrial acetyl-CoA carboxylase providing malonyl-CoA for intraorganellar fatty acid and, in particular, lipoic acid synthesis.  相似文献   

5.
AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 microM and at palmitoyl-CoA concentrations ranging from 0 to 100 microM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 +/- 0.25 to 0.85 +/- 0.13 microM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 muM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.  相似文献   

6.
The BHE strain of rat is characterized by early hyperinsulinemia and maturity onset hyperlipemia and hyperglycemia. Since we have previously shown that insulin is required for the coordinate regulation of a number of lipogenic enzymes in rat liver, a comparative study of the hepatic activities of the rate-limiting enzymes of lipid synthesis and the in vivo rates of fatty acid and cholesterol synthesis in the liver and the adipose tissue has been conducted in BHE and Wistar rats. In the liver, BHE rats had 25–28% higher acetyl-CoA carboxylase and fatty acid synthetase activities as measured in vitro but a 100% greater rate of fatty acid synthesis in vivo as compared to Wistar animals. These results strongly suggest that factors other than the amount of acetyl-CoA carboxylase, such as allosteric effectors, must be operating in vivo, thereby facilitating the carboxylase to function at its maximal capacity in BHE rats. Such a regulation of fatty acid biosynthesis by allosteric modifiers of acetyl-CoA carboxylase is already known, although the mechanism of this regulation is not fully understood. BHE rats also exhibited a twofold greater rate of fatty acid synthesis in the adipose tissue compared to the Wistar rats. Thus, increased lipogenic capacity and increased lipogenesis in BHE rats are consistent with early hyperinsulinemia in this strain. Furthermore, BHE rats had 71% more 3-hydroxy-3-methylglutaryl CoA reductase activity with a 97% greater rate of cholesterol synthesis as compared to Wistar rats. In contrast, cholesterol 7α-hydroxylase activity was only 20% greater in BHE rats compared to Wistar rats, suggesting that the BHE rat does not have the capacity to degrade cholesterol to bile acids at a rate commensurate with the increased rate of cholesterol synthesis. This difference in synthesis versus degradation might account for the hypercholesterolemia which occurs in BHE rats, but not in Wistar rats.  相似文献   

7.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

8.
9.
The conidia of Colletotrichum orbiculare, the causal agent of cucumber anthracnose, develop appressoria that are pigmented with melanin for host plant infection. Premature appressoria contain abundant lipid droplets (LDs), but these disappear during appressorial maturation, indicating lipolysis inside the appressorial cells. The lipolysis and melanization in appressoria require the peroxin PEX6, suggesting the importance of peroxisomal metabolism in these processes. To investigate the relationships between appressorial lipolysis and fungal metabolic pathways, C. orbiculare knockout mutants of MFE1, which encodes a peroxisomal multifunctional enzyme, were generated in this study, and the phenotype of the mfe1 mutants was investigated. In contrast to the wild-type strain, which forms melanized appressoria, the mfe1 mutants formed colorless nonmelanized appressoria with abundant LDs, similar to those of pex6 mutants. This indicates that fatty acid β-oxidation in peroxisomes is critical for the appressorial melanization and lipolysis of C. orbiculare. Soraphen A, a specific inhibitor of acetyl-CoA carboxylase, inhibited appressorial lipolysis and melanization, producing phenocopies of the mfe1 mutants. This suggests that the conversion of acetyl-CoA, derived from fatty acid β-oxidation, to malonyl-CoA is required for the activation of lipolysis in appressoria. Surprisingly, we found that genetically blocking PKS1-dependent polyketide synthesis, an initial step in melanin biosynthesis, also impaired appressorial lipolysis. In contrast, genetically or pharmacologically blocking the steps in melanin synthesis downstream from PKS1 did not abolish appressorial lipolysis. These findings indicate that melanin biosynthesis, as well as fatty acid β-oxidation, is involved in the regulation of lipolysis inside fungal infection structures.  相似文献   

10.
The conditional mRNA transport mutant of Saccharomyces cerevisiae, acc1-7-1 (mtr7-1), displays a unique alteration of the nuclear envelope. Unlike nucleoporin mutants and other RNA transport mutants, the intermembrane space expands, protuberances extend from the inner membrane into the intermembrane space, and vesicles accumulate in the intermembrane space. MTR7 is the same gene as ACC1, encoding acetyl coenzyme A (CoA) carboxylase (Acc1p), the rate-limiting enzyme of de novo fatty acid synthesis. Genetic and biochemical analyses of fatty acid synthesis mutants and acc1-7-1 indicate that the continued synthesis of malonyl-CoA, the enzymatic product of acetyl-CoA carboxylase, is required for an essential pathway which is independent from de novo synthesis of fatty acids. We provide evidence that synthesis of very-long-chain fatty acids (C26 atoms) is inhibited in acc1-7-1, suggesting that very-long-chain fatty acid synthesis is required to maintain a functional nuclear envelope.  相似文献   

11.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

12.
The activities of hepatic acetyl-CoA carboxylase and fatty acid synthetase undergo two distinct types of development in the perinatal chick. The first increase begins prior to hatching, continues after hatching in the starved chick, and is independent of feeding. The second increase is caused by feeding and is reversed by starvation (A. G. Goodridge (1973) J. Biol. Chem.248, 1932–1938). We have purified these enzymes to homogeneity and raised antibodies to them in rabbits. Using immunochemical techniques we have established that the activity changes in both types of development were a function of changes in the concentrations of enzyme proteins. All activity changes were accompanied by similar changes in the relative rates of synthesis of the two enzymes. Regulation of the activities of acetyl-CoA carboxylase and fatty acid synthetase was further characterized in liver cells from 19-day-old embryos maintained in culture in a chemically defined medium. After 3 days in culture in the absence of hormones, the activities of the enzymes increased significantly with respect to the activities of the freshly prepared cells. Addition of either insulin or triiodothyronine alone caused additional small increases. Insulin plus triiodothyronine caused 8- and 15-fold increases in acetyl-CoA carboxylase and fatty acid synthetase, respectively, relative to cells incubated without hormones. In the presence of insulin alone glucagon had no effect on the activity of either enzyme. In the presence of insulin plus triiodothyronine, glucagon inhibited the increase in enzyme activities by about 75%. The results of quantitative immunoprecipitin tests indicated that activity changes caused by the various hormones were functions of changes in the concentrations of the enzyme proteins. The effects of the hormones on enzyme activities were accompanied by comparable or larger changes in the relative rates of synthesis of the enzymes. Under a wide variety of experimental conditions, both in vivo and in culture, the relative rates of synthesis of acetyl-CoA carboxylase and fatty acid synthetase are regulated coordinately. Under some of these conditions, synthesis of malic enzyme also is regulated coordinately with the syntheses of acetyl-CoA carboxylase and fatty acid synthetase. The common intracellular mechanisms underlying the coordinate control remain to be elucidated.  相似文献   

13.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

14.
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the α- and β-subunits, respectively, are not in an operon, yet yield an α2β2 carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the β-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a ‘dimmer switch’ to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.  相似文献   

15.
The activity of acetyl-CoA carboxylase, measured in various ways, was studied in 15000g extracts of rat liver hepatocytes and compared with the rate of fatty acid synthesis in intact hepatocytes incubated with insulin or glucagon. Hepatocyte extracts were prepared by disruption of cells with a Dounce homogenizer or by solubilization with 1.5% (v/v) Triton X-100. Sucrose-density-gradient centrifugation demonstrated that the sedimentation coefficient of acetyl-CoA carboxylase from cell extracts was 30-35S, regardless of the conditions of incubation or disruption of hepatocytes. Solubilization of cells with 1.5% Triton X-100 yielded twice as much enzyme activity (measured by [14C]bicarbonate fixation) in the sucrose-gradient fractions as did cell disruption by the Dounce homogenizer. Analysis by high-performance liquid chromatography of acetyl-CoA carboxylase reaction mixtures showed that [14C]malonyl-CoA accounted for 10-60% of the total acid-stable radioactivity, depending on the method for disrupting hepatocytes and on the preincubation of the 15000g extract, with or without citrate, before assay. Under conditions in which incubation of cells with insulin or glucagon caused an activation or inhibition, respectively, of acetyl-CoA carboxylase, only 25% of the acid-stable radioactivity was [14C]malonyl-CoA and enzyme activity was only 13% (control), 16% (insulin), and 57% (glucagon) of the rate of fatty acid synthesis. Under conditions when up to 60% of the acid-stable radioactivity was [14C]malonyl-CoA and acetyl-CoA carboxylase activity was comparable with the rate of fatty acid synthesis, there was no effect of insulin or glucagon on enzyme activity.  相似文献   

16.
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.  相似文献   

17.
Regulation of Plant Acetyl-CoA Carboxylase by Adenylate Nucleotides   总被引:5,自引:5,他引:0       下载免费PDF全文
The assay of acetyl-CoA carboxylase (EC 6.4.1.2) does not follow ideal zero-order kinetics when assayed in a crude extract from wheat (Triticum aestivum L.) germ. Our results show that the lack of ideality is the consequence of contamination by ATPase and adenylate kinase. These enzyme activities generate significant amounts of ADP and AMP in the assay mixture, thus limiting the availability of ATP for the carboxylase reaction. Moreover, ADP and AMP are competitive inhibitors, with respect to ATP, of acetyl-CoA carboxylase. Similar relationships between adenylate nucleotides and acetyl-CoA carboxylase are found in isolated chloroplasts. There is no evidence that acetyl-CoA carboxylase activity in the extracts of the plant systems examined is altered by covalent modification, such as a phosphorylation-dephosphorylation cycle. A scheme is presented that illustrates the dependency of acetyl-CoA carboxylase and fatty acid synthesis on the energy demands of the chloroplasts in vivo.  相似文献   

18.
1. 1. Genetically obese mice (C5 7BL/6J-ob/ob, Jackson Laboratories) have much higher levels of hepatic acetyl-CoA carboxylase activity than their lean siblings, under a variety of nutritional states. However, when these mice are fasted for 48 h and then refed a fat-free diet for 48 h, the activity of this enzyme in the lean group shows about a 9-fold increase over the measured under normal dietary conditions, while obese mice show only 1 2-fold increase. The acetyl-CoA carboxylase activity observed under the dietary conditions is thus comparable in both lean and obese animals. Oil feeding or fasting for 48 h markedly depresses the activity of this enzyme in both groups and seems to be an effective means of reducing acetyl-CoA carboxylase activity in the obese mice, particularly, to far below the values found under normal dietary conditions.
2. 2. Both acetyl-CoA carboxylase and fatty acid synthetase purified from livers of obese and lean mice show comparable specific activities and no demonstrable differences with respect to their kinetic properties. Acetyl-CoA carboxylase from the two sources is also identical with respect to sensitivity to reagents and other inhibitors (such as malonyl-CoA, palmitoyl-CoA, etc.), to heat inactivation and in its sedimentation properties.
These results suggest quantitative differences rather than differences in the catalytic and regulatory properties of the obese and lean enzymes.  相似文献   

19.
1. Highly purified rat mammary-gland acetyl-CoA carboxylase was inhibited by milk obtained from rats 12h after their young were weaned. 2. All the inhibitory activity was found in the particulate fraction (R(105)) obtained on centrifuging the milk. It could be extracted from milk fraction R(105) with acetone and identified as a complex mixture of non-esterified fatty acids, present in high concentration (nearly 10mm) in the milk. 3. Inhibition of acetyl-CoA carboxylase was observed at low concentrations (0.2-20mum) of several of these fatty acids when fresh fully active enzyme was used. Enzyme that had been partly inactivated by aging, or by storing in the absence of citrate, was stimulated by low concentrations but inhibited by high concentrations of fatty acids. 4. Various experiments suggested that fatty acids produce irreversible inactivation of acetyl-CoA carboxylase. 5. The effects of palmitoyl-CoA on mammary-gland acetyl-CoA carboxylase were found to resemble those of fatty acids, except that palmitoyl-CoA was effective at lower concentration. 6. The effect of milk fraction R(105) was tested on six other enzymes previously shown to decline to various extents after weaning. Although several of these enzymes were affected by unfractionated milk fraction R(105), none was significantly inhibited by the acetone extract or by low concentrations of lauric acid. 7. The findings are consistent, both qualitatively and quantitatively, with a regulatory mechanism whereby milk fatty acids shut off fatty acid synthesis in the mammary gland after weaning by inhibiting acetyl-CoA carboxylase.  相似文献   

20.
Primary cultures of adult rat hepatocytes were utilized to ascertain the impact of free fatty acids on the insulin plus dexamethasone induction of acetyl-CoA carboxylase. Lipogenesis was induced threefold by the combination of insulin and dexamethasone. The rise in fatty acid synthesis was accompanied by a comparable increase in the rate-determining enzyme acetyl-CoA carboxylase. Dexamethasone was required for the insulin induction of acetyl-CoA carboxylase. Under the permissive action of glucocorticoid, 10(-7) M insulin maximally increased enzyme activity. Half-maximum stimulation occurred with 5 X 10(-9) M insulin. Media containing 0.2 mM palmitate, oleate, linoleate, arachidonate, or docosahexaenoate significantly suppressed the hormonal induction of acetyl-CoA carboxylase. The extent of suppression was only 30-35% and did not vary with chain length or degree of unsaturation. Carboxylase activity was not suppressed further by raising the concentration of linoleate to 0.5 mM; however, 0.5 mM palmitate depleted the cells of ATP and abolished acetyl-CoA carboxylase activity. Therefore, based upon the inhibitory characteristics of the various fatty acids and the lack of a concentration dependency of the fatty acid inhibition, it would appear that fatty acid inhibition of the induction of acetyl-CoA carboxylase activity may not be a direct, physiological regulatory mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号