首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of the bipolar moss Sanionia uncinata (Hedw.) Loeske to ambient and enhanced UV‐B radiation was investigated at an Antarctic (Léonie Island, 67°35′ S, 68°20′ W) and an Arctic (Ny‐Alesund, 78°55′ N, 11°56′ E) site, which differed in ambient UV‐B radiation (UV‐BR: 280–320 nm) levels. The UV‐BR effects on DNA damage and photosynthesis were investigated in two types of outdoor experiments. First of all, sections of turf of S. uncinata were collected in an Arctic and Antarctic field site and exposed outdoors to ambient and enhanced UV‐BR for 2 d using UV‐B Mini‐lamps. During these experiments, chlorophyll a fluorescence, chlorophyll concentration and cyclobutyl pyrimidine dimer (CPD) formation were measured. Secondly, at the Antarctic site, a long‐term filter experiment was conducted to study the effect of ambient UV‐BR on growth and biomass production. Additionally, sections of moss turf collected at both the Antarctic and the Arctic site were exposed to UV‐BR in a growth chamber to study induction and repair of CPDs under controlled conditions. At the Antarctic site, a summer midday maximum of 2·1 W m?2 of UV‐BR did not significantly affect effective quantum yield (ΔF/Fm′) and the ratio of variable to maximal fluorescence (Fv/Fm). The same was found for samples of S. uncinata exposed at the Arctic site, where summer midday maxima of UV‐BR were about 50% lower than at the Antarctic site. Exposure to natural UV‐BR in summer did not increase CPD values significantly at both sites. Although the photosynthetic activity remained largely unaffected by UV‐B enhancement, DNA damage clearly increased as a result of UV‐B enhancement at both sites. However, DNA damage induced during the day by UV‐B enhancement was repaired overnight at both sites. Results from the long‐term filter experiment at the Antarctic site indicated that branching of S. uncinata was reduced by reduction of ambient summer levels of UV‐BR, whereas biomass production was not affected. Exposure of specimens collected from both sites to UV‐BR in a growth chamber indicated that Antarctic and Arctic S. uncinata did not differ in UV‐BR‐induced DNA damage. It was concluded that S. uncinata from both the Antarctic and the Arctic site is well adapted to ambient levels of UV‐BR.  相似文献   

2.
Summary There was no disturbance in the growth of Lemna minor L. with a SO2 concentration of up to 0.3 ppm in air. A SO2 concentration of 0.6 ppm caused an initial depression of the growth rate of about 25%, but in the course of adaptation, the rate rose to the values of the control. The average dry weight per frond was not influenced by the SO2 fumigation. The initial sporadic appearance of chloroses by fumigation with 0.6 ppm SO2 was considered a sign of the proximate toxicity limit for Lemna minor L. With 0.15 ppm SO2 in air, the size of the fronds was reduced. The average surface of the fronds was diminished by 0.3 ppm SO2 for about 16% as compared with the control plants.The protein remained quantitatively uneffected up to a SO2 concentration of 0.6 ppm. As a qualitative influence of SO2, the nitrogen content of the proteins remained constant, but the sulfur content of the proteins increased.Under 0.3 and 0.6 ppm SO2, the starch content decreased immediately by 20–30%, under 0.15 ppm SO2 the decrease reached the same level after a longer time than in the case of the higher concentrations.The SO2 concentrations up to 0.6 ppm had no effect on chlorophyll concentration.The contents of C, N, H, P, K, Na, Ca, Mg, Mn, and Fe were not effected by SO2 fumigation.Conclusion: SO2 may have some effects on product yield, even under low concentrations, without provoking acute damage; the plant is able to adapt by regulation of its metabolism, and enters a new steady state.The study was supported by a grant of the Swiss National Science Foundation (project number 3.866.71)  相似文献   

3.
Koziol, M. J., Shelvey, J. D. and Beedham, B. 1986 Uptake ofS'v anions and the induction of gaseous emissions in leaf segmentsof SO2-sensitiveand resistant genotypes of Lolium perenne L.—J.exp.Bot. 37: 556–571. At pH 3?0 and over a range of concentrations from 5 to 100 molm–3 NaHSO2 the SO2 genotype (S23) took up less and showed a lower metabolic thresholdfor the induction of gaseous emissions than the SO2 genotype(BR). Emission of H2S from leaf segments of S23 was inducedat an estimated sulphite concentration of 605 ng g–1 fr.wt. compared with 932 ng g–1 fr. wt. in BR. Although theuptake of sulphite by leaf segments incubated on NaHSO3 solutionsat pH 7?0 was similar to that of leaf segments incubated atpH 3?0, very little ethane, ethylene or H2S were emitted. Afree radical scavenging mechanism is proposed to explain theseobservations. At pH 6?0 and concentrations of NaHSO3 equivalent to low tomoderate exposure concentrations of gaseous SO2 BR took up moresulphite than S23. Uptake in both genotypes was partially inhibitedby CCCP and by pre-loading the leaf segments with sulphate,indicating an active uptake mechanism transporting both sulphateand sulphite. Key words: Bisulphite/sulphite, gaseous emissions, uptake, Lolium perenne L  相似文献   

4.
Exposure of spinach (Spinacia oleracea L. cv. Monosa) to 0.25 μl l?1 H2S reduced the relative growth rate by 26, 47 and 60% at 15, 18 and 25°C, respectively. Shoot to root ratio decreased in plants fumigated at 18 and 25°C. Growth of spinach was not affected by a 2-week exposure to 0.10 or 0.25 μl l?1 SO2. Both H2S and SO2 fumigation increased the content of sulfhydryl compounds and sulfate. A 2-week exposure to 0.25 μl l?1 H2S resulted in an increase in sulfhydryl and sulfate content of 250 to 450% and 63 to 248% in the shoots, respectively, depending on growth temperature. Exposure to 0.15 and 0.30 μl l?1 H2S at 20°C for 2 weeks resulted in a 46% increase in sulfate content of the shoots at 0.30 μl l?1 and no detectable increase at 0.15 μl l?1 H2S; the sulfate content of the roots increased by 195 and 145% at 0.15 and 0.30 μl l?1 H2S, respectively. Fumigation with 0.25 μl l?1 SO2 at 20°C for 2 weeks resulted in an increase in sulfhydryl content and sulfate content in the shoots of 285% and 300 to 1100%. H2S fumigation during the 12 h light period or only during the dark period resulted in identical growth reduction and accumulation of sulfhydryl compounds; they were about 50 and 67% of those observed in continuously exposed plants. H2S- and SO2-exposed plants showed an increased transpiration rate, which was mainly caused by an increased dark-period transpiration. No effect of H2S and SO2 on the water uptake of the plants and the osmotic potential of the leaves was detected. Plants fumigated with 0.25 μl l?1 H2S for 2 weeks were smaller and differed morphologically from the control plants by slightly more abaxially curved leaf margins. Cross sections of the leaves showed smaller cells at the margins and smaller and fewer air spaces. The increased transpiration in the H2S-exposed plants is discussed in relation to the observed morphological changes.  相似文献   

5.
《Phytochemistry》1987,26(6):1627-1630
Biosynthesis of polar lipids (phospho- and glycolipids) from [1-14C]acetate was observed in mature needles from hydroponically grown jack pine seedlings. Treatment of the seedlings with vanadium (V) or nickel (Ni) produced marked concentration-dependent inhibitions in the biosynthesis of all polar lipids. Nickel appeared to be more inhibitory than V at 10 ppm. Fumigation of seedlings with gaseous SO2 (0.34 ppm) also resulted in reduced biosynthesis of polar lipids. Combined treatment of plant seedlings with metal (V or Ni) and SO2 produced inhibitory effects that were very similar to those produced by metal alone; however, SO2 did produce an additive inhibitory effect at 10 ppm V.  相似文献   

6.
Th. Keller 《Oecologia》1980,44(2):283-285
Summary Spruce cuttings were potted in quartz sand. One half was watered with tap water, the other with deionized water containing 100 ppm F- as NaF, during winter till bud break. After flushing the plants were exposed continuously for five weeks (June/July) either to normal air or to air with 0.025 and 0.075 ppm SO2, respectively. CO2-uptake was measured in the laboratory (40,000 lux) with an IRGA.Even in the absence of visible symptoms of injury to last year's needles, root-applied fluoride did suppress CO2-uptake significantly. Also the fumigation with 0.075 ppm SO2 caused a depression of CO2-uptake, whereas 0.025 ppm SO2 remained without significant reaction within five weeks. Fluorides infiltrating through roots and airborne SO2 acting together may depress CO2-uptake synergistically.Soil applied fluoride accumulated particularly in roots and twigs, whereas very little was found in the stem. The F--accumulation even increased with increasing SO2-concentrations but was without effect on S-accumulation.  相似文献   

7.
Jerusalem artichoke (Helianthus tuberosus L.), an important crop, containing over 50% inulin in its tubers on a dry weight basis is an agricultural and industrial crop with a great potential for production of ethanol and industrial products. Inulin is a good substrate for bioethanol production. Saccharomyces cerevisiae 6525 can produce high concentrations of ethanol, but it cannot synthesize inulinase. In this study, a new integration vector carrying inuA1 gene encoding exoinulinase was constructed and transformed into 18SrDNA site of industrial strain S. cerevisiae 6525. The obtained transformant, BR8, produced 1.1 U mL? 1 inulinase activity within 72 h and the dry cell weight reached 12.3 g L? 1 within 48 h. In a small-scale fermentation, BR8 produced 9.5% (v/v) ethanol, with a productivity rate of 0.385 g ethanol per gram inulin, while wild-type S. cerevisiae 6525 produced only 3.3% (v/v) ethanol in the same conditions. In a 5-L fermentation, BR8 produced 14.0% (v/v) ethanol in fermentation medium containing inulin and 1% (w/v) (NH4)2SO4. The engineered S. cerevisiae 6525 carrying inuA1 converted pure nonhydrolyzed inulin directly into high concentrations of ethanol.  相似文献   

8.
Ten soils collected from the major arable areas in Britain were used to assess the availability of soil sulphur (S) to spring wheat in a pot experiment. Soils were extracted with various reagents and the extractable inorganic SO4-S and total soluble S(SO4-S plus a fraction of organic S) were determined using ion chromatography (IC) or inductively-coupled plasma atomic emission spectrometry (ICP-AES), respectively. Water, 0.016 M KH2PO4, 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extracted similar amounts of SO4-S, as measured by IC, which were consistently smaller than the total extractable S as measured by ICP-AES. The amounts of organic S extracted varied widely between different extractants, with 0.5 M NaHCO3 (pH 8.5) giving the largest amounts and 0.01 M CaCl2 the least. Organic S accounted for approximately 30–60% of total S extracted with 0.016 M KH2PO4 and the organic C:S ratios in this extract varied typically between 50 and 70. The concentrations of this S fraction decreased in all soils without added S after two months growth of spring wheat, indicating a release of organic S through mineralisation. All methods tested except 0.5 M NaHCO3-ICP-AES produced satisfactory results in the regression with plant dry matter response and S uptake in the pot experiment. In general, 0.016 M KH2PO4 appeared to be the best extractant and this extraction followed by ICP-AES determination was considered to be a good method to standardise on.  相似文献   

9.
Exposure of Parmelia chlorochroa and Collema polycarpon to 1 and 2 ppm gaseous SO2 (4-, 8-, and 12-hr fumigations) initially stimulated photosynthesis but prolonged exposure depressed it. Carbohydrate transfer decreased in both species but increased significantly after a 12-hr exposure in C. polycarpon. Interference with normal oxidation-reduction and denaturation of enzymes and membrane proteins by sulfite and bisulfite ions may account for the observed results. Increased conductivity of leachates reflected SO2-induced damage at both 1 and 2 ppm sO2.  相似文献   

10.
In high‐latitude regions, carbon dioxide (CO2) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot‐scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long‐term (2001–2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross‐seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.  相似文献   

11.
Seed priming has proved to be an effective pre-germination seed invigoration technique for different crops to improve seed and seedling performance under different abiotic stresses. In Bangladesh, winter rice is very often exposed to cold waves just after sowing in the nursery bed resulting in poor seed germination and seedling emergence, yellowish and thin seedlings production, and a very low survival rate. Seed priming may mitigate the cold stress during seed germination and seedling emergence and helps in the quality seedling production of winter rice. To evaluate the efficacy of different seed priming techniques in increasing seedling emergence, growth, vigor and survivability of winter rice cultivars under cold stress, a pot experiment was conducted at the Department of Agronomy, Bangladesh Agricultural University during December 2018 to January 2019. The experiment comprised two factors, (A) Winter rice variety namely, i) BRRI dhan29 and ii) BRRI dhan36; (B) Seed priming agent namely i) Control (no priming), ii) 20000 ppm NaCl, iii) 30000 ppm NaCl, iv) 20000 ppm KCl, v) 30000 ppm KCl, vi) 20000 ppm CaCl2, vii) 30000 ppm CaCl2, viii) 50 ppm CuSO4, ix) 75 ppm CuSO4, x) 10000 ppm ZnSO4, xi) 15000 ppm ZnSO4, xii) 2 ppm Na2MoO4, xiii) 3 ppm Na2MoO4, xiv) 100 ppm PEG (Polyethylene glycol 4000) and xv) 150 ppm PEG. Seeds were sown on two different dates viz., 1st December and 1st January so that seedlings are exposed to cold stress at different stages. The experiment was laid out in a completely randomized design (CRD) with three replications. Results indicated that (in most of the cases) seed priming has a positive impact on seedling emergence rate (%), root length, shoot length, root shoot ratio, root dry weight, shoot dry weight, seedling dry weight and survival rate (%). Among the priming agents, KCl and CaCl2 performed best; while priming with NaCl and PEG showed no advantages over no priming for both the sowing dates. In general, BRRI dhan36 performed better than BRRI dhan29 in terms of seedling growth because of its higher tolerance to cold stress. But, both the varieties performed similarly in terms of emergence rate and survival rate. Thus, priming is an effective tool to increase seed germination, better seedling growth, and higher seedling survivability of winter rice under cold stress, and KCl (20000 ppm) or CaCl2 (20000 ppm) can be considered as a viable priming agent.  相似文献   

12.
Hybrid poplar plants were exposed to 0.5 ppm SO2, 0.25 ppm O3 or 0.5 ppm SO2 + 0.25 ppm O3, 12 hr/day for 24 days to ascertain their effects on leaf growth and abscission. The data revealed that both O3 alone and O3 + SO2 promoted leaf abscission, while SO2 alone had no effect. Leaf area and dry weight were reduced while leaf abscission was stimulated by ozone fumigation. The interaction found between SO2 and O3, with all the parameters measured, was an antagonistic relationship in which SO2 reduced the toxic effect of ozone. The data analyzed, in relation to leaf position, demonstrated that ozone did not affect development of the six youngest rapidly growing leaves. However, ozone significantly reduced both leaf area and leaf weight, at later stages of development.  相似文献   

13.
SO2 and NO2 effects on microbial activity in an acid forest soil   总被引:1,自引:0,他引:1  
The rate of glucose decomposition and the pH fell in a forest soil (initial pH 4.06) exposed to 1.0 ppm SO2. No such effect was noted if the soil was exposed to 1.0 ppm nitrogen dioxide (NO2). Nitrite but not bisulfite (5g N or S/g of soil) inhibited O2 consumption and CO2 evolution in the glucose-amended forest soil, and nitrite and bisulfite acted synergistically in inhibiting these processes. Iron and manganese were solubilized when the soil was exposed to 10 ppm SO2, but NO2 caused no such change.  相似文献   

14.
Summary Maximum uptake of Zn in barley (Hordeum vulgare L.) seedlings occurred from nutrient solutions containing SO4−S at 3.5 ppm and K at 6 ppm. Decreased translocation of Zn from roots to tips was observed when plants were grown with lower levels of S and K. Cysteine substituted for SO4-ion as a source of S in Zn absorption, and more Zn was absorbed with cysteine than with sulfate. The effect of K on Zn absorption seems to be influenced by S nutrition in plants.  相似文献   

15.
Studies on sulphur in vertisols   总被引:1,自引:0,他引:1  
Summary Some soil and plant test methods were evaluated for predicting response of soybean crop (Glycine max (L.) Merr.) to S application in vertisols. Morgan's reagent, 500 ppm P containing Ca(H2PO4)2.H2O and KH2PO4 solutions, 0.5N NH4OAc+0.25N HOAc and 0.15% CaCl2 were found to be suitable extractants for measuring available soil S. The critical limits of extractable S were 9.0 ppm by Morgan's reagent, 10.0 ppm by phosphate solutions, 8.0 ppm by 0.5N NH4OAc +0.25N HOAc and 14.0 ppm by 0.15% CaCl2. Morgan's reagent was regarded as superior to other soil test methods in view of its high relationship with S uptake by plants, A values and relative yield. Critical S concentration in soybean plants varied with age. It was 0.15% and 0.185% for 36 and 60 days old plants, respectively. The critical N/S ratio on the other hand appeared to be constant at about 16.5 during vegetative growth period. Constancy of critical N/S ratio in plants was attributed to the near constancy of N/S ratio in plant proteins. There was highly significant relationship between response of soybean to S and to N, supporting the conclusion of some earlier workers that any soil showing large responses to N may not be supplying adequate S from the mineralization of soil organic matter.  相似文献   

16.
张逸飞  刘小慧  杨平  黄佳芳  郭谦谦  仝川 《生态学报》2018,38(13):4715-4723
2015年12月—2016年10月,每月小潮日原位定期向闽江口塔礁洲淡水感潮野慈姑(Sagittaria trifolia L.)湿地施加剂量为60、120 kg S hm~(-2)a~(-1)的K_2SO_4溶液(分别记做S-60和S-120),探讨模拟硫酸根(SO_4~(2-))沉降对河口淡水感潮湿地甲烷(CH4)排放通量及间隙水SO_4~(2-)浓度的影响。对照、S-60和S-120处理组CH_4排放通量年均值分别为(7.88±1.00)mg h~(-1)m~(-2)、(6.55±0.97)mg h~(-1)m~(-2)和(6.66±1.49)mg h~(-1)m~(-2)。在年尺度上,两个高强度模拟SO_4~(2-)沉降处理组均未显著降低闽江口淡水感潮野慈姑湿地CH_4排放通量(P0.05),即高强度SO_4~(2-)沉降不会对河口淡水感潮湿地CH_4排放通量产生类似于其对泥炭湿地和水稻田的显著抑制效应。在年尺度以及秋、冬季,两个施加K_2SO_4溶液处理显著增加了野慈姑湿地10 cm深度土壤间隙水SO_4~(2-)浓度。对于各个处理组,温度较高的夏、秋季CH_4排放通量均显著高于温度相对较低的冬、春季(P0.05)。不同处理组CH_4排放通量均与土壤温度呈显著正相关关系,温度仍然是影响亚热带河口淡水感潮湿地CH_4排放通量的重要环境因子。  相似文献   

17.
Pea (Pisum sativum L. cv `Little Marvel') plants were exposed to SO2 for short term (3 hours) and long term (2 days) at 0.2 and at 0.5 microliter per liter (ppm) levels. The effect of this treatment on the activity of phosphoenolpyruvate carboxylase, NAD- and NADP-malate dehydrogenases, and alanine aminotransferase from epidermis and whole leaves was investigated. Short-term exposure to SO2 at 0.2 or 0.5 ppm decreased the activity of the carboxylase and the dehydrogenases in the epidermis. In contrast, the activity of the same three enzymes increased in whole leaves with either short- or long-term exposure to SO2. Alanine aminotransferase in epidermis or whole leaves was not much affected by short-term exposure, but the epidermal activity was decreased and whole leaf activity was increased with long-term exposure. SO2 exposure which was initiated prior to illumination decreased the free thiol content of both epidermis and of whole leaf. Net photosynthesis was reversibly inhibited by long-term exposure to SO2 at 0.5 ppm. No effect of 0.5 ppm SO2 on stomatal conductance was detectable after 3 hours. Stomatal conductance appeared to decrease after longer exposure times (2 days) at 0.5 ppm.  相似文献   

18.
Candle burning is regarded as an important source of airborne pollutants in indoor environments. Indoor concentrations of aldehydes, benzo(a)pyrene, sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) produced from the burning of scented candles and raw materials with different melting point/oil content (50/1, 55/9, and 65/6) were predicted using a single compartment mass balance model and compared to regulatory or guideline limits. Scented candles may be responsible for indoor acrolein concentrations that could become relevant to health only in the case of chronic exposure. Indoor concentrations of fine PM and SO2 emitted from 65/6 wax burning under worst-case environmental and behavioral conditions were greater than their respective acute guideline limits. However, other waxes had levels of PM and SO2 well below the recommended values. Indoor concentrations of nitrogen dioxide emitted from raw wax burning should be further investigated. The degree of pureness of raw waxes significantly affected the predicted indoor concentrations of PM and SO2. In particular, 65/6 wax was criticized for its high content of impurities.  相似文献   

19.
Elevated CO2 decreases seed germination in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
The impact of elevated [CO2] on seed germination was studied in different genotypes of Arabidopsis thaliana from natural populations. Two generations of seeds were studied: the maternal generation was produced in the greenhouse (present-day conditions), the offspring generation was produced in two chambers where the CO2 concentration was either the present atmospheric concentration (about 350 ppm) or elevated (700 ppm). The seeds were tested for proportion of germinated seeds and mean germination time in both chambers to study the impact of elevated [CO2] during seed production and germination. Elevated [CO2] during maturation of seeds on the mother-plants decreased the proportion of germinated seeds, while elevated [CO2] during germination had no effect on the proportion of germinated seeds. However, when seeds were both produced and germinated under elevated [CO2] (situation expected by the end of next century), germination was slow and low. Moreover, the effect of the [CO2] treatment differs among genotypes of Arabidopsis: there is a strong treatment × genotype interaction. This means that there is ample genetic variance for a selective response modiying the effects of high levels of [CO2] in natural populations of Arabidopsis thaliana. The outcome at the community level will depend on what seeds are available, when they germinate and the resulting competition following germination.  相似文献   

20.
Pretreatment of biomass with dilute H2SO4 results in residual acid which is neutralized with alkalis such as Ca(OH)2, NaOH and NH4OH. The salt produced after neutralization has an effect on the fermentation of Pichia stipitis. Synthetic media of xylose (60 g total sugar/l) was fermented to ethanol in the presence and absence of the salts using P. stipitis CBS 6054. CaSO4 enhanced growth and xylitol production, but produced the lowest ethanol concentration and yield after 140 h. Na2SO4 inhibited xylitol production, slightly enhanced growth towards the end of fermentation but had no significant effect on xylose consumption and ethanol concentration. (NH4)2SO4 inhibited growth, had no effect on xylitol production, and enhanced xylose consumption and ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号