首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development and function of the Rhizobium meliloti-Medicago sp. symbiosis are sensitive to soil acidity. Physiological criteria that can be measured in culture which serve to predict acid tolerance in soil would be valuable. The intracellular pH of R. meliloti was measured using either radioactively labeled weak acids (5,5-dimethyloxazolidine-2,4-dione and butyric acid) or pH-sensitive fluorescent compounds; both methods gave similar values. Six acid-tolerant strains (WSM419, WSM533, WSM539, WSM540, WSM852, and WSM870) maintained an alkaline intracellular pH when the external pH was between 5.6 and 7.2. In contrast, two Australian commercial inoculant strains (CC169 and U45) and four acid-sensitive strains from alkaline soils in Iraq (WSM244, WSM301, WSM365, and WSM367) maintained an alkaline intracellular pH when the external pH was ≥6.5, but had intracellular pH values of ≤6.8 when the external pH was ≤6.0. Four transposon Tn5-induced mutants of acid-tolerant strain WSM419, impaired in their ability to grow at pH 5.6, showed limited control over the intracellular pH. The ability to generate a large pH gradient under acid conditions may be a better indicator of acid tolerance in R. meliloti under field conditions than is growth on acidic agar plates.  相似文献   

2.
In a panel of 18 colon cancer cell lines we found that the thymidylate synthase (TS) genotype was related to TS enzyme activity, but not to TS protein and mRNA levels. In addition, no relation with drug sensitivity was observed. TS genotyping of different tissues from 78 colorectal cancer patients revealed a high level of homology in polymorphic status between normal and malignant tissues and the heterozygous genotype to be the most frequent.  相似文献   

3.
4.
A set of plasmid cloning vehicles was developed to facilitate the construction of gene or operon fusions in Rhizobium meliloti. The vehicles also contain a broad-host-range replicon and could be introduced into bacteria either by transformation or by transduction, using bacteriophage P2. Insertion of foreign DNA into a unique restriction endonuclease cleavage site promotes the synthesis of either the Escherichia coli lactose operon or the kanamycin phosphotransferase gene from transposon Tn5. Expression of the lactose operon could be detected by observing the color of Rhizobium colonies on medium that contained a chromogenic indicator. We also determined the growth conditions that make it possible to select either for or against the expression of the E. coli lactose operon in R. meliloti. Recombinant plasmids were constructed by inserting MboI restriction fragments of R. meliloti DNA into one of the vehicles, pMK353 . Expression of beta-galactosidase by a number of these recombinants was measured in both R. meliloti and E. coli.  相似文献   

5.
Research into archaea will not achieve its full potential until systems are in place to carry out genetics and biochemistry in the same species. Haloferax volcanii is widely regarded as the best-equipped organism for archaeal genetics, but the development of tools for the expression and purification of H. volcanii proteins has been neglected. We have developed a series of plasmid vectors and host strains for conditional overexpression of halophilic proteins in H. volcanii. The plasmids feature the tryptophan-inducible p.tnaA promoter and a 6×His tag for protein purification by metal affinity chromatography. Purification is facilitated by host strains, where pitA is replaced by the ortholog from Natronomonas pharaonis. The latter lacks the histidine-rich linker region found in H. volcanii PitA and does not copurify with His-tagged recombinant proteins. We also deleted the mrr restriction endonuclease gene, thereby allowing direct transformation without the need to passage DNA through an Escherichia coli dam mutant.Over the past century, our understanding of fundamental biological processes has grown exponentially, and this would have been impossible without the use of organisms that are amenable to experimental manipulation. Model species, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and Arabidopsis thaliana, have become a byword for scientific progress (15). The rational choice of a model organism is critically important, and certain features are taken for granted, such as ease of cultivation, a short generation time, and systems for genetic manipulation. This list has now grown to include a genome sequence and methods for biochemical analysis of purified proteins in vitro.Research into archaea has lagged behind work on bacteria and eukaryotes but has nonetheless yielded profound insights (2). One hurdle has been the paucity of archaeal organisms suitable for both biochemistry and genetics. For example, Methanothermobacter thermautotrophicus is a stalwart of archaeal biochemistry but has proved resistant to even the most rudimentary genetic manipulation (2). Progress has recently been made with another biochemical workhorse, Sulfolobus spp., and a few genetic tools are now available (6, 13, 37). Methanosarcina spp. and Thermococcus kodakaraensis offer alternative systems with an increasing array of techniques (16, 35, 36), but sophisticated genetics has traditionally been the preserve of haloarchaea, of which Haloferax volcanii is the organism of choice (39). It is easy to culture, the genome has been sequenced (19), and there are several selectable markers and plasmids for transformation and gene knockout (3, 7, 31), including a Gateway system (14), as well as reporter genes (20, 33) and a tightly controlled inducible promoter (26).The genetic prowess of H. volcanii is not yet fully matched by corresponding systems for protein overexpression and purification. Like other haloarchaea, H. volcanii grows in high salt concentrations (2 to 5 M NaCl), and to cope with the osmotic potential of such environments, it accumulates high intracellular concentrations of potassium ions (12). Consequently, halophilic proteins are adapted to function at high salt concentrations and commonly feature a large excess of acidic amino acids; the negative surface charge is thought to be critical to solubility (28). This can pose problems for expression in heterologous hosts, such as E. coli, since halophilic proteins can misfold and aggregate under conditions of low ionic strength. The purification of misfolded halophilic enzymes from E. coli has relied on the recovery of insoluble protein from inclusion bodies, followed by denaturation and refolding in hypersaline solutions (8, 11). This approach is feasible only where the protein is well characterized and reconstitution of the active form can be monitored (for example, by an enzymatic assay). Furthermore, archaeal proteins expressed in heterologous bacterial hosts lack posttranslational modifications, such as acetylation or ubiquitination (4, 22), which are critical to understanding their biological function.Systems for expression of halophilic proteins in a native haloarchaeal host are therefore required. A number of studies have successfully purified recombinant proteins with a variety of affinity tags after overexpression in H. volcanii. For example, Humbard et al. employed tandem affinity tagging to purify 20S proteasomal core particles from the native host (23). However, the protein expression constructs used in these studies were custom made and somewhat tailored to the application in question. We report here the development of “generic” plasmid vectors and host strains for conditional overexpression of halophilic proteins in H. volcanii. The plasmids feature a tryptophan-inducible promoter derived from the tnaA gene of H. volcanii (26). We demonstrate the utility of these vectors by overexpressing a hexahistidine-tagged recombinant version of the H. volcanii RadA protein. Purification was greatly facilitated by a host strain in which the endogenous pitA gene was replaced by an ortholog from Natronomonas pharaonis. The latter protein lacks the histidine-rich linker region found in H. volcanii PitA (5) and therefore does not copurify with His-tagged recombinant proteins. Finally, we deleted the mrr gene of H. volcanii, which encodes a restriction enzyme that cleaves foreign DNA methylated at GATC residues. The mrr deletion strain allows direct transformation of H. volcanii without the need to passage plasmid DNA through an E. coli dam mutant (21).  相似文献   

6.
We have developed a system for rapid and reliable assessment of gene essentiality in Haemophilus influenzae Rd strain KW20. We constructed two “suicide” complementation vectors (pASK5 and pASK6) containing 5′ and 3′ regions of the nonessential ompP1 gene flanking a multiple cloning site and a selectable marker (a chloramphenicol resistance gene or a tetracycline resistance cassette). Transformation of H. influenzae with the complementation constructs directs chromosomal integration of a gene of interest into the ompP1 locus, where the strong, constitutive ompP1 promoter drives its expression. This single-copy, chromosome-based complementation system is useful for confirming the essentiality of disrupted genes of interest. It allows genetic analysis in a background free of interference from any upstream or downstream genetic elements and enables conclusive assignment of essentiality. We validated this system by using the riboflavin synthase gene (ribC), a component of the riboflavin biosynthetic pathway. Our results confirmed the essentiality of ribC for survival of H. influenzae Rd strain KW20 and demonstrated that a complementing copy of ribC placed under control of the ompP1 promoter reverses the lethal phenotype of a strain with ribC deleted.  相似文献   

7.
Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS) expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU) treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.  相似文献   

8.
Mob1p is an essential Saccharomyces cerevisiae protein, identified from a two-hybrid screen, that binds Mps1p, a protein kinase essential for spindle pole body duplication and mitotic checkpoint regulation. Mob1p contains no known structural motifs; however MOB1 is a member of a conserved gene family and shares sequence similarity with a nonessential yeast gene, MOB2. Mob1p is a phosphoprotein in vivo and a substrate for the Mps1p kinase in vitro. Conditional alleles of MOB1 cause a late nuclear division arrest at restrictive temperature. MOB1 exhibits genetic interaction with three other yeast genes required for the completion of mitosis, LTE1, CDC5, and CDC15 (the latter two encode essential protein kinases). Most haploid mutant mob1 strains also display a complete increase in ploidy at permissive temperature. The mechanism for the increase in ploidy may occur through MPS1 function. One mob1 strain, which maintains stable haploidy at both permissive and restrictive temperature, diploidizes at permissive temperature when combined with the mps1–1 mutation. Strains containing mob2Δ also display a complete increase in ploidy when combined with the mps1-1 mutation. Perhaps in addition to, or as part of, its essential function in late mitosis, MOB1 is required for a cell cycle reset function necessary for the initiation of the spindle pole body duplication.  相似文献   

9.
10.
11.
12.
Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functionally interchangeable and similar in evolutionary origin. NGR234 exoC and exoY corresponded to R. meliloti exoB and exoF, respectively. NGR234 exoD was found to be an operon that included genes equivalent to exoM, exoA, and exoL in R. meliloti. Complementation of R. meliloti exoP, -N, and -G by NGR234 R'3222 indicated that additional equivalent genes remain to be found on the R-prime. We were not able to complement NGR234 exoB with R. meliloti DNA. In addition to functional and evolutionary equivalence of individual genes, the general organization of the exo regions was similar between the two species. It is likely that the same ancestral genes were used in the evolution of both exopolysaccharide biosynthetic pathways and probably of pathways in other species as well.  相似文献   

13.

Background

Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo.

Methodology/Principal Findings

Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals.

Conclusions/Significance

These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in gene therapy of human PD.  相似文献   

14.
Although vectors based on adeno-associated virus (AAV) offer several unique advantages, their usage has been hampered by the difficulties encountered in vector production. In this report, we describe a new AAV packaging system based on inducible amplification of integrated helper and vector constructs containing the simian virus 40 (SV40) replication origin. The packaging and producer cell lines developed express SV40 T antigen under the control of the reverse tetracycline transactivator system, which allows inducible amplification of chromosomal loci linked to the SV40 origin. Culturing these cells in the presence of doxycycline followed by adenovirus infection resulted in helper and vector gene amplification as well as higher vector titers. Clonal producer cell lines generated vector titers that were 10 times higher than those obtained by standard methods, with approximately 104 vector particles produced per cell. These stocks were free of detectable replication-competent virus. The lack of a transfection step combined with the reproducibility of stable producer lines makes this packaging method ideally suited for the large-scale production of vector stocks for human gene therapy.  相似文献   

15.
Cloning vectors (pFD1001, pFD1192, pFD1194, and pFD1212) were constructed by extension of the host range of a 7.2-kb Rhizobium meliloti cryptic plasmid (pRm1132f) with the ColE1-based plasmids, pBR322, pACYC177, pACYC 184, pSUP301, or pHC179; mobilization was facilitated by introduction of the ori T region from pRK2, a broad-host-range plasmid. The vector plasmids transferred readily into a wide range of gram-negative bacteria and had relatively low copy number in R. meliloti; two constructs, pFD1001 and pFD1212, were completely stable in R. meliloti isolated from nodules of alfalfa (Medicago sativa). A representative of the vector constructs (pFD1001) could be maintained in R. meliloti in the presence of the broad-host-range shuttle plasmid pRK290. These two vector plasmids could be introduced into R. meliloti, either simultaneously or singly when pRK290 was the resident plasmid; however, entry of pRK290 was blocked when pFD1001 was the resident plasmid. The cloning vectors constructed in this study should prove to be useful for the genetic manipulation of Rhizobium.  相似文献   

16.
17.
利用基因重组技术,用RT-PCR法从幼鼠肾脏获得uPA cDNA,再克隆到质粒pAAV-IRES-hrGFP的多克隆位点,构建重组质粒pAAV-hrGFP-uPA,通过酶切和DNA测序鉴定重组质粒的正确性,采用磷酸钙共沉淀法,以重组质粒pAAV-hrGFP-uPA和pAAV-RC、pHelper共转染AAV-293细胞,产生具有传染性的病毒颗粒;用斑点杂交法测定重组病毒颗粒的滴度,再将此病毒颗粒体外转染到培养的肾小管细胞中,倒置荧光显微镜观察GFP的表达,用免疫组化法检测转染的uPA蛋白表达,结果表明:成功地构建uPA基因GFP-腺相关病毒重组质粒,病毒滴度达每mL 4×10^13病毒颗粒,60%~70%肾小管细胞感染了病毒颗粒,感染的肾小管细胞能稳定、高效表达外源uPA蛋白,为今后建立AAV-uPA基因治疗肾纤维化的模型奠定了良好的基础.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号