首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A role for glycine in the gating of plant NMDA-like receptors   总被引:2,自引:0,他引:2  
The amino acid glycine has a well-established role in signalling in the mammalian central nervous system. For example, glycine acts synergistically with the major excitatory neurotransmitter, glutamate, to regulate the influx of ions such as calcium, through N-methyl-d-aspartate (NMDA) receptors. Plants possess NMDA-like receptors, generically referred to as glutamate receptors (GLRs), named on the basis of their presumed ligand, glutamate. Previously, glycine has not been implicated in plant GLR activity or any other aspect of plant signalling. Using transgenic Arabidopsis seedlings expressing aequorin to monitor ligand-mediated changes in the cytosolic concentration of Ca2+ ([Ca2+]cyt), the data presented herein show that glutamate and glycine act synergistically to control ligand-mediated gating of calcium in plants. Glutamate and glycine synergism also regulates hypocotyl elongation. Transient increases in [Ca2+]cyt mediated by glutamate and glycine, as well as hypocotyl elongation, were inhibited by 6,7-dinitroquinoxaline-2,3 dione (DNQX), a competitive inhibitor of animal GLRs. Using a multiscale docking algorithm in combination with a molecular model of the ligand-binding domain of plant GLRs, evidence is provided indicating that glycine, and not glutamate, is likely to be the natural ligand for most plant GLR subunits. These findings uncover a hitherto unconsidered role for glycine signalling in plants, and suggest that the synergistic action of glutamate and glycine at NMDA-like receptors predates the divergence of plants and animals.  相似文献   

2.
The plant Glutamate-Like Receptors (GLRs) are homologs of animal ionotropic glutamate receptors (iGluRs), and are hypothesized to be potential amino acid sensors in plants. Genetic studies of proteins from this family implicate individual GLRs in a diversity of physiological roles in plants. Recently, amino-acid gated channel activities have been proven for a few plant GLRs, suggesting that at least some of the functional mechanisms are conserved between plant GLRs and animal iGluRs. Animal iGluRs generally form heterotetramers, and the ligand-binding specificity and channel functionality is determined by interaction between the subunits. In order to investigate whether plant GLRs interact with each other, a modified yeast-2-hybrid system (mbSUS) approach was taken on 15 of the 20 Arabidopsis GLRs to identify potential interaction partners. Using this approach, we have successfully identified GLR subunits that are capable of interacting with multiple other GLRs. Unlike iGluRs, sequence similarity between the subunit was not correlated with the likelihood of interaction among 2 given subunits. Interactions between selected GLRs (GLR1.1, 2.9, 3.2, and 3.4) were further tested in another heterologous expression system, mammalian HEK293 cells, using Förster resonance energy transfer (FRET). Two separate approaches (sensitized FRET and acceptor photobleaching) indicated that GLRs 1.1 and 3.4 are capable of forming homomers, whereas other combinations did not result in detectable FRET between the subunits.  相似文献   

3.
Vacuoles play various roles in many physiologically relevant processes in plants. Some of the more prominent are turgor provision, the storage of minerals and nutrients, and cellular signalling. To fulfil these functions a complement of membrane transporters is present at the tonoplast. Prolific patch clamp studies have shown that amongst these, both selective and non-selective ion channels participate in turgor regulation, nutrient storage and signalling. This article reviews the physiological roles, expression patterns and structure function properties of plant vacuolar anion and cation channels that are gated by voltage and ligands.  相似文献   

4.
Glutamate in plants: metabolism, regulation, and signalling   总被引:10,自引:0,他引:10  
Glutamate occupies a central position in amino acid metabolism in plants. The acidic amino acid is formed by the action of glutamate synthase, utilizing glutamine and 2-oxoglutarate. However, glutamate is also the substrate for the synthesis of glutamine from ammonia, catalysed by glutamine synthetase. The alpha-amino group of glutamate may be transferred to other amino acids by the action of a wide range of multispecific aminotransferases. In addition, both the carbon skeleton and alpha-amino group of glutamate form the basis for the synthesis of gamma-aminobutyric acid, arginine, and proline. Finally, glutamate may be deaminated by glutamate dehydrogenase to form ammonia and 2-oxoglutarate. The possibility that the cellular concentrations of glutamate within the plant are homeostatically regulated by the combined action of these pathways is examined. Evidence that the well-known signalling properties of glutamate in animals may also extend to the plant kingdom is reviewed. The existence in plants of glutamate-activated ion channels and their possible relationship to the GLR gene family that is homologous to ionotropic glutamate receptors (iGluRs) in animals are discussed. Glutamate signalling is examined from an evolutionary perspective, and the roles it might play in plants, both in endogenous signalling pathways and in determining the capacity of the root to respond to sources of organic N in the soil, are considered.  相似文献   

5.
离子型谷氨酸受体(iGLuR)是哺乳动物中一类由L-氨基酸(如谷氨酸、甘氨酸)等配体门控的阳离子通道, 具有调节兴奋性神经信号传递和引导神经元发育等分子功能。1998年研究者在拟南芥(Arabidopsis thaliana)中发现了20个与iGLuRs同源的序列(即AtGLRs), 它们的功能涉及植物光信号传递、根尖分生细胞活性、花粉管生长、胞质Ca2+流以及应答多种生物和非生物环境胁迫等。该文从谷氨酸受体(GLR)的结构特征、离子通道激活与配体的关系、表达模式及可能的生物学功能等方面, 综述了近十几年来关于植物GLR和氨基酸信号的研究成果, 旨在为相关领域的同行提供有益的参考。  相似文献   

6.
7.
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate fast excitatory neurotransmission in the mammalian central nervous system. In the model plant Arabidopsis thaliana, a large family of 20 genes encoding proteins that share similarities with animal iGluRs in sequence and predicted secondary structure has been discovered. Members of this family, termed AtGLRs (A. thaliana glutamate receptors), have been implicated in root development, ion transport, and several metabolic and signalling pathways. However, there is still no direct proof of ligand-gated ion channel function of any AtGLR subunit. We used a domain transplantation technique to directly test whether the putative ion pore domains of AtGLRs can conduct ions. To this end, we transplanted the ion pore domains of 17 AtGLR subunits into rat α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (GluR1) and kainate (GluR6) receptor subunits and tested the resulting chimaeras for ion channel function in the Xenopus oocyte expression system. We show that AtGLR1.1 and AtGLR1.4 have functional Na+-, K+-, and Ca2+-permeable ion pore domains. The properties of currents through the AtGLR1.1 ion pore match those of glutamate-activated currents, depolarisations, and glutamate-triggered Ca2+ influxes observed in plant cells. We conclude that some AtGLRs have functional non-selective cation pores.  相似文献   

8.
Like their animal counterparts, plant glutamate receptor‐like (GLR) homologs are intimately associated with Ca2+ influx through plasma membrane and participate in various physiological processes. In pathogen‐associated molecular patterns (PAMP)‐/elicitor‐mediated resistance, Ca2+ fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca2+] ([Ca2+]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense‐related genes by OGs. In addition, wild‐type Col‐0 plants treated with the glutamate‐receptor antagonist 6,7‐dinitriquinoxaline‐2,3‐dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against Harabidopsidis. In addition, some OGs‐triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen‐mediated plant defense signaling pathways in Arabidopsis thaliana.  相似文献   

9.
Cation channels in the Arabidopsis plasma membrane   总被引:7,自引:0,他引:7  
In vivo analyses have identified different functional types of ion channels in various plant tissues and cells. The Arabidopsis genome contains approximately 70 genes for ion channels, of which 57 might be cation-selective channels (K(+), Ca(2+) or poorly discriminating channels). Here, we describe the different families of (putative) cation channels: the Shakers, the two-P-domain and Kir K(+) channels (encoded by the KCO genes), the cyclic-nucleotide-gated channels, the glutamate receptors, and the Ca(2+) channel TPC1. We also compare molecular data with the data obtained in planta, which should lead to a better understanding of the identity of these channels and provide clues about their roles in plant nutrition and cell signalling.  相似文献   

10.
Ionotropic glutamate (Glu) receptors in the central nervous system of animals are tetrameric ion channels that conduct cations across neuronal membranes upon binding Glu or another agonist. Plants possess homologous molecules encoded by GLR genes. Previous studies of Arabidopsis thaliana root cells showed that the amino acids alanine (Ala), asparagine (Asn), cysteine (Cys), Glu, glycine (Gly), and serine trigger transient Ca(2+) influx and membrane depolarization by a mechanism that depends on the GLR3.3 gene. This study of hypocotyl cells demonstrates that these six effective amino acids are not equivalent agonists. Instead, they grouped into hierarchical classes based on their ability to desensitize the response mechanism. Sequential treatment with two different amino acids separated by a washout phase demonstrated that Glu desensitized the depolarization mechanism to Gly, but Gly did not desensitize the mechanism to Glu. All 36 possible pairs of agonists were tested to characterize the desensitization hierarchy. The results could be explained by a model in which one class of channels contained a subunit that was activated and therefore desensitized only by Glu, while a second class could be activated and desensitized by Ala, Cys, Glu, or Gly. A third class could be activated and desensitized by any of the six effective amino acids. Analysis of knockout mutants indicated that GLR3.3 was a required component of all three classes of channels, while the related GLR3.4 molecule specifically affected only two of the classes. The resulting model is an important step toward understanding the biological roles of these enigmatic ion channels.  相似文献   

11.
Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response to cryptogein, a well studied elicitor of defence response, and partly responsible for cryptogein-induced NO production. However, other cryptogein-induced calcium-dependent events including anion efflux, H2O2 production, MAPK activation and hypersensitive response (HR) did not depend on iGluRs indicating that different calcium channels regulate different processes at the cell level. We have also demonstrated that cryptogein induces efflux of glutamate in the apoplast by exocytosis. Taken together, our results demonstrate for the first time, an involvement of a putative iGluR in plant defence signaling and NO production, by mechanisms that show homology with glutamate mode of action in mammals.  相似文献   

12.
We review the recent advances on Ca(2+) in tip-growing cells, with a special focus on pollen tubes. New genes for Ca(2+) pumps, channels and sensing proteins have been recently described, with special emphasis on cyclic nucleotide gated channels (CNGCs) and glutamate receptor-like channels (GLRs). We also review the current state of knowledge in what concerns Ca(2+) sensor and relay proteins, where the knowledge of the cell models is less advanced. While these newly described genes offer promise to a better understanding of the spatial and temporal patterns of Ca(2+) signalling that may be relevant for the formation of the phenotype, we discuss the necessity to investigate further links in the network downstream of the Ca(2+) signature, with a special need for mechanisms of feed-back that might render functional feed-back loops approachable by modelling and genetics. Given the available literature, we conclude on the need to investigate more on the role of two specific classes of proteins, the calcium binding protein kinases (CPKs) and the Calcineurin B-like proteins (CBLs) and their regulatory relationships to ion channels (summarized in Figure 3b).  相似文献   

13.
14.
Mutations in TRPC6, a member of the transient receptor potential (TRP) superfamily of non-selective cation channels, have been identified as causing a familial form of focal segmental glomerulosclerosis, a disease characterized by proteinuria and progressive renal failure. Here we review the effect of disease-associated mutations on TRPC6 function and place TRPC6 within the context of other proteins central to glomerular and podocyte function. Finally, the known roles of TRPC6 in the kidney and other organ systems are used as a framework to discuss possible signaling pathways that TRPC6 may modulate during normal glomerular function and in disease states.  相似文献   

15.
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.  相似文献   

16.
We performed a genealogical analysis of the ionotropic glutamate receptor (iGluR) gene family, which includes the animal iGluRs and the newly isolated glutamate receptor-like genes (GLR) of plants discovered in Arabidopsis. Distance measures firmly placed the plant GLR genes within the iGluR clade as opposed to other ion channel clades and indicated that iGluRs may be a primitive signaling mechanism that predated the divergence of animals and plants. Moreover, phylogenetic analyses using both parsimony and neighbor joining indicated that the divergence of animal iGluRs and plant GLR genes predated the divergence of iGluR subtypes (NMDA vs. AMPA/KA) in animals. By estimating the congruence of the various glutamate receptor gene regions, we showed that the different functional domains, including the two ligand-binding domains and the transmembrane regions, have coevolved, suggesting that they assembled together before plants and animals diverged. Based on residue conservation and divergence as well as positions of residues with respect to functional domains of iGluR proteins, we attempted to examine structure-function relationships. This analysis defined M3 as the most highly conserved transmembrane domain and identified potential functionally important conserved residues whose function can be examined in future studies.  相似文献   

17.
Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMP or cGMP binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e. demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. We report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the alpha-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K(+) uptake system complements growth inhibition only when lipophilic cyclic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus laevis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K(+) currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca(2+) only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence (to our knowledge) identifying a plant member of this ion channel family.  相似文献   

18.
19.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca2+ signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

20.
Li J  Zhu S  Song X  Shen Y  Chen H  Yu J  Yi K  Liu Y  Karplus VJ  Wu P  Deng XW 《The Plant cell》2006,18(2):340-349
Glu receptors are known to function as Glu-activated ion channels that mediate mostly excitatory neurotransmission in animals. Glu receptor-like genes have also been reported in higher plants, although their function is largely unknown. We have identified a rice (Oryza sativa) Glu receptor-like gene, designated GLR3.1, in which mutation by T-DNA insertion caused a short-root mutant phenotype. Histology and DNA synthesis analyses revealed that the mutant root meristematic activity is distorted and is accompanied by enhanced programmed cell death. Our results supply genetic evidence that a plant Glu receptor-like gene, rice GLR3.1, is essential for the maintenance of cell division and individual cell survival in the root apical meristem at the early seedling stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号