首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

2.
A NADPH cytochrome c oxidoreductase purified from membranes of rabbit peritoneal neutrophil was shown to behave as the NADPH dehydrogenase component of the O2- generating oxidase complex. A photoactivable derivative of NADP+, azido nitrophenyl-gamma-aminobutyryl NADP+ (NAP4-NADP+), was synthesized in its labeled [3H] form and used to photolabel the NADPH cytochrome c reductase at different stages of the purification procedure. Control assays performed in dim light indicated that the reduced form of NADP4-NADP+ generated by reduction with glucose-6-phosphate and glucose-6-phosphate dehydrogenase was oxidized at virtually the same rate as NADPH. Upon photoirradiation of the purified reductase in the presence of [3H]NAP4-NADP+ and subsequent separation of the photolabeled species by sodium dodecyl sulfate polyacrylamide gel electrophoresis, radioactivity was found to be present predominantly in a protein band with a molecular mass of 77-kDa and accessorily in bands of 67-kDa and 57-kDa. Evidence is provided that the 67-kDa and 57-kDa proteins arose from the 77-kDa protein by proteolysis. Despite removal of part of the sequence, the proteolyzed proteins were still active in catalyzing electron transport from NADPH to cytochrome c and in binding the photoactivable derivative of NADP+.  相似文献   

3.
The thermal unfolding and domain structure of myosin subfragment 1 (S1) from rabbit skeletal muscles and their changes induced by nucleotide binding were studied by differential scanning calorimetry. The binding of ADP to S1 practically does not influence the position of the thermal transition (maximum at 47.2 degrees C), while the binding of the non-hydrolysable analogue of ATP, adenosine 5'-[beta, gamma-imido]triphosphate (AdoPP[NH]P) to S1, or trapping of ADP in S1 by orthovanadate (Vi), shift the maximum of the heat adsorption curve for S1 up to 53.2 and 56.1 degrees C, respectively. Such an increase of S1 thermostability in the complexes S1-AdoPP[NH]P and S1-ADP-Vi is confirmed by results of turbidity and tryptophan fluorescence measurements. The total heat adsorption curves for S1 and its complexes with nucleotides were decomposed into elementary peaks corresponding to the melting of structural domains in the S1 molecule. Quantitative analysis of the data shows that the domain structure of S1 in the complexes S1-AdoPP[NH]P and S1-ADP-Vi is similar and differs radically from that of nucleotide-free S1 and S1 in the S1-ADP complex. These data are the first direct evidence that the S1 molecule can be in two main conformations which may correspond to different states during the ATP hydrolysis: one of them corresponds to nucleotide-free S1 and to the complex S1-ADP, and the other corresponds to the intermediate complexes S1-ATP and S1-ADP-Pi. Surprisingly it turned out that the domain structure of S1 with ADP trapped by p-phenylene-N, N'-dimaleimide (pPDM) thiol cross-linking almost does not differ from that of the nucleotide-free S1. This means that pPDM-cross-linked S1 in contrast to S1-AdoPP[NH]P and S1-ADP-Vi can not be considered a structural analogue of the intermediate complexes S1-ATP and S1-ADP-Pi.  相似文献   

4.
The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.  相似文献   

5.
The Mg2+-induced low-affinity nucleotide binding by (Na+ + K+)-ATPase has been further investigated. Both heat treatment (50-65 degrees C) and treatment with N-ethylmaleimide reduce the binding capacity irreversibly without altering the Kd value. The rate constant of inactivation is about one-third of that for the high-affinity site and for the (Na+ + K+)-ATPase activity. Thermodynamic parameters (delta H degree and delta S degree) for the apparent affinity in the ATPase reaction (Km ATP) and for the true affinity in the binding of AdoPP[NH]P (Kd and Ki) differ greatly in sign and magnitude, indicating that one or more reaction steps following binding significantly contribute to the Km value, which thus is smaller than the Kd value. Ouabain does not affect the capacity of low-affinity nucleotide binding, but only increases the Kd value to an extent depending on the nucleotide used. GTP and CTP appear to be most sensitive, ATP and ADP intermediately sensitive and AdoPP[NH]P and AMP least sensitive to ouabain. Ouabain reduces the high-affinity nucleotide binding capacity without affecting the Kd value. The nucleotide specificity of the low-affinity binding site is the same for binding (competition with AdoPP[NH]P) and for the ATPase activity (competition with ATP): AdoPP[NH]P greater than ATP greater than ADP greater than AMP. The low-affinity nucleotide binding capacity is preserved in the ouabain-stabilized phosphorylated state, and the Kd value is not increased more than by ouabain alone. It is inferred that the low-affinity site is located on the enzyme, more specifically its alpha-subunit, and not on the surrounding phospholipids. It is situated outside the phosphorylation centre. The possible functional role of the low-affinity binding is discussed.  相似文献   

6.
Joël Lunardi  Pierre V. Vignais 《BBA》1982,682(1):124-134
(1) N-4-Azido-2-nitrophenyl-γ-[3H]aminobutyryl-AdoPP[NH]P(NAP4-AdoPP[NH]P) a photoactivable derivative of 5-adenylyl imidodiphosphate (AdoPP[NH]P), was synthesized. (2) Binding of 3H]NAP4-AdoPP[NH]P to soluble ATPase from beef heart mitochrondria (F1) was studied in the absence of photoirradiation, and compared to that of [3H]AdoPP[NH]P. The photoactivable derivative of AdoPP[NH]P was found to bind to F1 with high affinity, like AdoPP[NH]P. Once [3H]NAP4-AdoPP[NH]P had bound to F1 in the dark, it could be released by AdoPP[NH]P, ADP and ATP, but not at all by NAP4 or AMP. Furthermore, preincubation of F1 with unlabeled AdoPP[NH]P, ADP, or ATP prevented the covalent labeling of the enzyme by [3H]NAP4-AdoPP[NH]P upon photoirradiation. (3) Photoirradiation of F1 by [3H]NAP4-AdoPP[NH]P resulted in covalent photolabeling and concomitant inactivation of the enzyme. Full inactivation corresponded to the binding of about 2 mol [3H]NAP4-AdoPP[NH]Pmol F1. Photolabeling by NAP4-AdoPP[NH]P was much more efficient in the presence than in the absence of MgCl2. (4) Bound [3H]NAP4-AdoPP[NH]P was localized on the α- and β-subunits of F1. At low concentrations (less than 10 μM), bound [3H]NAP4-AdoPP[NH]P was predominantly localized on the α-subunit; at concentrations equal to, or greater than 75 μM, both α- and β-subunits were equally labeled. (5) The extent of inactivation was independent of the nature of the photolabeled subunit (α or β), suggesting that each of the two subunits, α and β, is required for the activity of F1. (6) The covalently photolabeled F1 was able to form a complex with aurovertin, as does native F1. The ADP-induced fluorescence enhancement was more severely inhibited than the fluorescence quenching caused by ATP. The percentage of inactivation of F1 was virtually the same as the percentage of inhibition of the ATP-induced fluorescence quenching, suggesting that fluorescence quenching is related to the binding of ATP to the catalytic site of F1.  相似文献   

7.
1. Dinitrophenol and maleate anions increase VATP on the 'washed', isolated, mitochondrial ATPase. Hydrolyses of iso-GTP and 2'-deoxy ATP are also stimulated, while hydrolyses of other nucleoside triphosphates (ITP, GTP etc.) are not. 2. Preincubation with ATP, iso-GTP or 2'-deoxy ATP results in a metastable enzyme form with a raised V and a reduced Km. Dinitrophenol stimulates both ATP and ITP hydrolyses by this form. 3. The Arrhenius plot of ATP (but not ITP) hydrolysis by the isolated ATPase shows a break at about 18 degrees C, apparently because the rate limiting step of hydrolysis changes as the temperature rises. 4. Adenylyl beta, gamma-imidodiphosphate (AdoPP[NH]P) inhibits ITP hydrolysis in a pseudofirst order reaction. Its binding is competitive with ITP. If the enzyme is preincubated with ATP, the rate of AdoPP[NH]P binding increases. It is concluded that AdoPP[NH]P inhibits by binding to the hydrolytic site of the enzyme. 5. We conclude that ATP hydrolysis is limited by diphosphate release and ITP hydrolysis by bond splitting. Energy release during ATP hydrolysis is maximal at the ATP binding step, and during ITP hydrolysis at bond splitting.  相似文献   

8.
Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle   总被引:2,自引:0,他引:2  
A procedure was developed to isolate a membrane fraction of rat skeletal muscle which contains a highly active Mg2+-ATPase (5-25 mumol Pi/mg min). The rate of ATP hydrolysis by the Mg2+-ATPase was nonlinear but decayed exponentially (first-order rate constant greater than or equal to 0.2 s-1 at 37 degrees C). The rapid decline in the ATPase activity depended on the presence of ATP or its nonhydrolyzable analog 5'-adenylyl imidodiphosphate (AdoPP[NH]P). Once inactivated, removal of ATP from the medium did not immediately restore the original activity. ATP- or AdoPP[NH]P-dependent inactivation could be blocked by concanavalin A, wheat germ agglutinin or rabbit antiserum against the membrane. Additions of these proteins after ATP addition prevented further inactivation but did not restore the original activity. Low concentrations of ionic and nonionic detergents increased the rate of ATP-dependent inactivation. Higher concentrations of detergents, which solubilize the membrane completely, inactivated the Mg2+-ATPase. Cross-linking the membrane components with glutaraldehyde prevented ATP-dependent inactivation and decreased the sensitivity of the Mg2+-ATPase to detergents. It is proposed that the regulation of the Mg2+-ATPase by ATP requires the mobility of proteins within the membrane. Cross-linking the membrane proteins with lectins, antiserum or glutaraldehyde prevents inactivation; increasing the mobility with detergents accelerates ATP-dependent inactivation.  相似文献   

9.
The effects of octylglucoside (OcGlc) micelles, which stimulate a Mg-specific ATPase activity in chloroplast coupling factor 1 [Pick, U. and Bassilian, S. (1982) Biochemistry, 21, 6144-6152], on the interactions of the enzyme with adenine nucleotides have been studied. 1. OcGlc specifically accelerates the binding and the release of ADP but not of ATP or adenosine 5'[beta, gamma-imido]triphosphate (AdoPP[NH]P) from the tight-sites. The binding affinity for ADP and for ATP is only slightly decreased (twofold) by the detergent. ATP competitively inhibits the binding of ADP and vice versa in the presence or absence of OcGlc. 2.OcGlc-induced inactivation of CF1-ATPase is correlated with the release of bound nucleotides. In the absence of medium nucleotides ADP X CF1 is rapidly inactivated while ATP X CF1 and AdoPP[NH]P X CF1 are slowly inactivated by OcGlc in parallel with the release of bound nucleotide. In contrast, low concentrations of either ATP or ADP in the medium effectively protect against OcGlc inactivation while AdoPP[NH]P, whose binding to CF1 is inhibited by OcGlc, is ineffective even at millimolar concentrations. The results suggest that the occupancy of the tight-sites protects the enzyme against OcGlc-induced inactivation. 3. Mg ions specifically inhibit the release of bound ADP and the OcGlc-induced inactivation of CF1. High concentrations of medium ATP and ADP (K50 = 100 microM) also inhibit the OcGlc-induced release of bound nucleotides in an EDTA medium. In contrast, in the absence of OcGlc, medium ADP and ATP accelerate the release of bound adenine nucleotides. 4. Mg-ATP in the presence of OcGlc stimulates the release of bound ADP from CF1. Bound ATP is neither released nor hydrolyzed at the tight-sites under these conditions where medium ATP is rapidly hydrolyzed. Mg-ADP stimulates the release of bound ADP only in the presence of inorganic phosphate or of phosphate analogs, e.g. arsenate, pyrophosphate or selenate. 5. It is suggested that: (a) ATP and ADP bind to the same tight-sites, but OcGlc activation specifically accelerates the exchange of bound ADP at the site. (b) CF1 contains low affinity adenine nucleotide binding sites which may be the catalytical sites and which influence the tight-sites by cooperative interactions. (c) Mg-ATP in the presence of OcGlc induces a conformational change at the catalytical site which accelerates the release of ADP from the tight-site. The implications of these results to the role of adenine nucleotides in the regulation and mechanism of ATP hydrolysis by CF1 are discussed.  相似文献   

10.
3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP containing a photoreactive benzophenone moiety, was used as a probe of the ATP binding site of myosin subfragment 1 (SF1). The inactivation of SF1 NH+4-EDTA ATPase by the bifunctional thiol crosslinking system cobalt(II)/cobalt(III) phenanthroline complexes was enhanced by Bz2ATP to the same degree as by ATP. This treatment resulted in the stable trapping of Bz2ATP at the active site in nearly stoichiometric amounts in a manner exactly analogous to ATP (Wells, J.A., and Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970). Irradiation of SF1 containing trapped [3H]Bz2ATP gave approximately 50% covalent incorporation of the trapped nucleotide into the enzyme. Analysis of photolabeled SF1 by gel electrophoresis showed that all of the [3H]Bz2ATP was attached to the 95-kDa heavy chain fragment. No label was found in the light chains. Similar analysis of the same protein after limited trypsin treatment demonstrated that approximately 75% of the [3H]Bz2ATP was bound to the central 50-kDa peptide and its 75-kDa precursor from the heavy chain. The N-terminal 25-kDa tryptic peptide, shown to be photolabeled by other ATP analogs (Szilagyi, L., Balint, M., Sreter, F.A., and Gergely, J. (1979) Biochem. Biophys. Res. Commun. 87, 936-945; Okamoto, Y., and Yount, R.G. (1983) Biophys. J. 41, 298a), was not labeled (less than 1%) by Bz2ATP. These results demonstrate that portions of the 50 kDa-peptide of the heavy chain are within 6-7 A of the ATP binding site on SF1 and possibly contribute to nucleotide binding.  相似文献   

11.
The effects of extracellular ATP on inositol phospholipid breakdown and synthesis of eicosanoids were studied in mouse peritoneal macrophages. Addition of ATP to intact cells labelled with [3H]inositol stimulated a rapid (within 10 s) formation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. In parallel there was also a substantial accumulation of inositol 1,3,4-trisphosphate and the monophosphate and bisphosphate derivatives of inositol. Within 10 s after the addition of 30 microM ATP there was a twofold increase in inositol trisphosphate (InsP3), which declined over 2 min. The ED50 for ATP-stimulated generation of InsP3 was approximately 12 microM. ADP and GTP showed only weak effects on InsP3 formation, while AMP and adenosine were completely ineffective at 30 microM. Furthermore, the rank order of potency of ATP analogues was ATP greater than ATP[S] greater than AdoPP[NH]P = AdoPP[CH2]P greater than AdoP[CH2]PP thus, indicating the presence of a P2y-purinergic receptor. Cells labelled with [3H]arachidonic acid showed a 50% increase of label in 1,2-diacylglycerol after 15 s upon stimulation with ATP. In parallel to the stimulation of inositol phospholipid hydrolysis, ATP also caused a marked synthesis of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in mouse peritoneal macrophages. The rank order of potency of ATP analogues was identical with that of InsP3 generation. The effect on eicosanoid synthesis could be mimicked by the calcium ionophore A23187 and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ATP-induced activation of P2y-purinergic receptors in mouse peritoneal macrophages triggers inositol phospholipid breakdown and eicosanoid synthesis.  相似文献   

12.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The glycosidic bond torsion angles and the conformations of the ribose of Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P (magnesium adenosine 5'-[beta, gamma-imido]triphosphate) bound to Ca2+ATPase, both native and modified with fluorescein isothiocyanate (FITC), in intact sarcoplasmic reticulum have been determined by the measurement of proton-proton transferred nuclear Overhauser enhancements by 1H-NMR spectroscopy. This method shows clearly the existence of a low-affinity ATP binding site after modification of the high-affinity site with FITC. For all three nucleotides bound to both the high-affinity (catalytic) site and the low-affinity site, we find that the conformation about the glycosidic bond is anti, the conformation of the ribose 3'-endo of the N type and the conformation about the ribose C4'-C5' bond either gauche-trans or trans-gauche. The values for the glycosidic bond torsion angles chi (O4'-C1'-N9-C4) for Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P bound to the low-affinity site of FITC-modified Ca2+ATPase are approximately equal to 270 degrees, approximately equal to 260 degrees and approximately equal to 240 degrees respectively. In the case of the nucleotides bound to the high-affinity (catalytic) site of native Ca2+ATPase, chi lies in the range 240-280 degrees.  相似文献   

14.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

15.
Comparison of the rat microsomal Mg-ATPase of various tissues   总被引:1,自引:0,他引:1  
The microsomal Mg-ATPase from various rat tissues was compared. After fractionating the microsomal vesicles by sucrose gradient centrifugation, the highest specific activity of the Mg-ATPase was found in the low-density vesicles which contained plasma membrane. A large fraction (25-90%) of the microsomal Ca-independent Mg-ATPase found in each tissue had the following properties: (1) the Km for ATP was 0.2 mM; (2) the rate of ATP hydrolysis by the Mg-ATPase was nonlinear due to an ATP-stimulated inactivation of the enzyme; (3) wheat germ agglutinin, concanavalin A, glutaraldehyde, and antiserum prevented inactivation induced by ATP or AdoPP[NH]P; (4) detergents at relatively low detergent:protein ratios increased the rate of inactivation with little change in the initial rate of ATP hydrolysis; (5) the Mg-ATPase was inactivated by irradiation in the presence of 8-azido ATP. (6) in addition to ATP, the Mg-ATPase was able to hydrolyze CTP, GTP, UTP, ITP, and GTP but was unable to hydrolyze any of the 10 nonnucleotide phosphocompounds which were tested; (7) the bivalent cation requirement of the Mg-ATPase could be provided by Mg2+, Ca2+, Mn2+, Zn2+, or Co2+ but the enzyme was inactive in the presence of Cu2+, Sr2+, Ba2+, or Be2+; (8) the Mg-ATPase activity was not altered by ionophores or inhibitors of the Na,K-ATPase, the Ca,Mg-ATPase or the mitochondrial F1ATPase. These data suggest that a major portion of the microsomal, basal Mg-ATPase activity is due to one unique enzyme found in most if not all tissues.  相似文献   

16.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

17.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

18.
The photoprobe 3'(2')-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (Bz2ATP) was used to characterize the nucleotide-binding site of myosin subfragment 1 (SF1). Improved synthesis and purification of Bz2ATP are reported. 1H NMR and ultraviolet spectroscopy show that Bz2ATP is a 60:40 mixture of the 3'(2')-ribose isomers and that the epsilon M261 is 41,000 M-1 cm-1. Bz2ATP is hydrolyzed by SF1 comparably to ATP in the presence of actin or K+, NH4+, or Mg2+ ions; and the product, Bz2ADP, has a single binding site on SF1 (K'a = 3.0 X 10(5) M-1). [3H]Bz2ATP was photoincorporated into SF1 with concomitant loss of K+-EDTA-ATPase activity. Analysis of photolabeled SF1 showed that the three major tryptic peptides (23, 50, and 20 kDa) of the heavy chain fragment and the alkali light chains were labeled. The presence of ATP during irradiation protected only the 50-kDa peptide, indicating that the other peptides were nonspecifically labeled. If Bz2ATP was first trapped on SF1 by cross-linking the reactive thiols, SH1 and SH2, with p-phenylenedimaleimide, only the 50-kDa tryptic peptide was labeled. These results confirm and extend previous observations that [3H]Bz2ATP trapped on SF1 by cobalt(III) phenanthroline photolabeled the same 50-kDa peptide (Mahmood, R., and Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959). Thus, the 50-kDa peptide is labeled with or without thiol cross-linking, indicating that the relative position of SH1 and SH2 does not affect the labeling pattern.  相似文献   

19.
2-Azido[alpha-32P]adenosine diphosphate (2-azido[alpha-32P]ADP) has been used to photolabel the ADP/ATP carrier in beef heart mitochondria. In reversible binding assays carried out in the dark, this photoprobe was found to inhibit ADP/ATP transport in beef heart mitochondria and to bind to two types of specific sites of the ADP/ATP carrier characterized by high-affinity binding (Kd = 20 microM) and low-affinity binding (Kd = 400 microM). In contrast, it was unable to bind to specific carrier sites in inverted submitochondrial particles. Upon photoirradiation of beef heart mitochondria in the presence of 2-azido[alpha-32P]ADP, the ADP/ATP carrier was covalently labeled. After purification, the photolabeled carrier protein was cleaved chemically by acidolysis or cyanogen bromide and enzymatically with the Staphylococcus aureus V8 protease. In the ADP/ATP carrier protein, which is 297 amino acid residues in length, two discrete regions extending from Phe-153 to Met-200 and from Tyr-250 to Met-281 were labeled by 2-azido[alpha-32P]ADP. The peptide fragments corresponding to these regions were sequenced, and the labeled amino acids were identified. As 2-azido-ADP is not transported into mitochondria and competes against transport of externally added ADP, it is concluded that the two regions of the carrier which are photolabeled are facing the cytosol. Whether the two photolabeled regions are located in a single peptide chain of the carrier or in different peptide chains of an oligomeric structure is discussed.  相似文献   

20.
Carbamoyl-phosphate synthetase was inactivated by elastase with first-order kinetics, and N-acetyl-L-glutamate speeded inactivation. From the dependence of the t1/2 value for inactivation on the concentration of acetylglutamate we estimate a Kd value for binding of the activator of 0.365 mM, which is approximately 600 times greater than in the presence of ATP, HCO3-, K+ and Mg2+. K+ and Mg2+ are not required for binding with low affinity, and in the absence of ATP they do not appear to increase the affinity for acetylglutamate. In the presence of acetylglutamate, mixtures of ATP, K+ and Mg2+ protect the enzyme from inactivation. ADP or AdoPP[NH]P partly replaced ATP in protecting the enzyme and thus binding of the nucleotide without further reaction is enough for protection. Two partial activities of the enzyme were inactivated by elastase to the same extent as the overall reaction, and thus elastase affects some property of the enzyme which is essential for catalysis. With other proteinases tested, inactivation was also accelerated by acetylglutamate and was slowed by mixtures of ATP, K+, Mg2+ and acetylglutamate, suggesting that changes in the accessibility of susceptible bonds are responsible for the changes in the degree of inactivation. It is concluded that elastase attacks at or close to the binding sites for ATP, and that exposure of the binding site for the ATP molecule that yields Pi (ATPA) upon binding of acetylglutamate causes the acceleration of the proteolytic inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号