首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules.  相似文献   

2.
The colchicine-binding assay was used to quantitate the tubulin concentration in unfertilized Strongylocentrotus purpuratus eggs and to characterize pharmacological properties of this tubulin. Specificity of colchicine binding to tubulin was demonstrated by apparent first-order decay colchicine-binding activity with stabilization by vinblastine sulfate, time and temperature dependence of the reaction, competitive inhibition by podophyllotoxin, and lack of effect of lumicolchicine. The results demonstrate that the minimum tubulin concentration in the unfertilized egg is 2.71 mg per milliliter or 5.0% of the total soluble cell protein. Binding constants and decay rates were determined at six different temperatures between 8 degrees C and 37 degrees C, and the thermodynamic parameters of the reaction were calculated. delta H0=6.6 kcal/mol, delta S0=46.5 eu, and, at 13 degrees C, delta G=-6.7 kcal/mol. The association constants obtained were similar to those of isolated sea urchin egg vinblastine paracrystals (Bryan, J. 1972. Biochemistry. 11:2611-2616) but approximately 10 times lower than that obtained for purified chick embryo brain tubulin at 37 degrees C (Wilson, L.J.R. Bamburg, S.B. Mizel, L. Grisham, and K. Creswell. 1974. Fed Proc. 33:158-166). Therefore, the lower binding constants for colchicine in tubulin-vinblastine paracrystals are not due to the paracrystalline organization of the tubulin, but are properties of the sea urchin egg tubulin itself.  相似文献   

3.
The inhibition of the polymerization of tubulin from cultured cells of rose (Rosa. sp. cv. Paul's scarlet) by colchicine and the binding of colchicine to tubulin were examined in vitro and compared with data obtained in parallel experiments with bovine brain tubulin. Turbidimetric measurements of taxol-induced polymerization of rose microtubules were found to be sensitive and semiquantitative at low tubulin concentrations, and to conform to some of the characteristics of a nucleation and condensation-polymerization mechanism for assembly of filamentous helical polymers. Colchicine inhibited the rapid phase of polymerization at 24°C with an apparent inhibition constant (K i) of 1.4·10-4 M for rose tubulin and an apparent K i=8.8·10-7 M for brain tubulin. The binding of [3H]colchicine to rose tubulin to form tubulin-colchicine complex was mildly temperature-dependent and slow, taking 2–3 h to reach equilibrium at 24°C, and was not affected by vinblastine sulfate. The binding of [3H]colchicine to rose tubulin was saturable and Scatchard analysis indicated a single class of low-affinity binding sites having an apparent affinity constant (K) of 9.7·102 M-1 and an estimated molar binding stoichiometry (r) of 0.47 at 24°C. The values for brain tubulin were K=2.46·106 M-1 and r=0.45 at 37°C. The binding of [3H]colchicine to rose tubulin was inhibited by excess unlabeled colchicine, but not by podophyllotoxin or tropolone. The data demonstrate divergence of the colchicine-binding sites on plant and animal tubulins and indicate that the relative resistance of plant microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin.Abbreviations MT microtubule - TC tubulin-colchicine complex  相似文献   

4.
Tubulin contents in the extract from cultured carrot cells at different growth phases were investigated by measuring colchicine-binding activity. The addition of vinblastine and dithiothreitol to the reaction mixture appreciably improved the stability of both free and colchicine-bound tubulins. Colchicine-binding activity in the cell extract obtained from stationary phase was more labile than that from log phase though the extract showed higher affinity to colchicine. After purification, however, tubulin from the cells at different growth phases showed the same affinity and its colchicine-binding activity was much more stable than in crude extract. The colchicine-binding activity in the crude extract was corrected for the decay during measurement and apparent difference in the affinity so that the activity in the cells containing different kind and amount of interefering substances could be compared. The corrected amount of colchicine that binds to the 100,000×g extract was 46 pmol/105 cells at log phase. It decreased with the progression of culture age from linear to stationary phase. Combining the data with the morphological observation, it was suggested that the log phase cells contained larger free tubulin pool than the linear or stationary phase cells.  相似文献   

5.
Colchicine-binding properties of the total cytoplasmic pool of tubulin from rat liver were evaluated in tubulin-stabilizing (TS) supernates. Microtubules were separated from free tubulin using a microtubule-stabilizing solution (MTS) and ultracentrifugation. [3H]Colchicine-binding properties of microtubule-derived tubulin were investigated in supernates prepared after resuspension of MTS pellets in TS. In TS buffer at 37 °C the colchicine-binding activity of the total cytoplasmic pool of tubulin decayed with T12 of 3.39 h. Resuspended pellet tubulin decayed much more rapidly under the same conditions with a T12 of 0.72 h. This rapid time decay of microtubule-derived tubulin was found to be at least partially attributable to prior microtubule-stabilizing solution exposure. Since tartrate has been reported to increase the rate of colchicine binding to tubulin, sodium tartrate (150 mm) was added to our colchicine-binding system. This addition increased the detectable [3H]colchicine binding by 10% in the total cytoplasmic preparation and by 85% in the resuspended pellet preparation. Addition of tartrate (150 mm) also resulted in a 105% increase in the T12 for total cytoplasmic tubulin and a 412% increase for microtubule derived tubulin. Total cytoplasmic supernates of liver bound [3H]colchicine linearly over a wide range of tissue concentrations. However, resuspended microtubule-stabilizing solution pellet supernates in tubulin-stabilizing solution showed some increase in colchicine binding per tissue weight in the more dilute samples. Our data which demonstrate differences in colchicine-binding properties for total cytoplasmic and microtubule-derived pools of tubulin suggest that present assays for hepatic tubulin polymerization which assume identical binding properties should be interpreted with caution.  相似文献   

6.
Abstract— Vinblastine- and colchicine-binding proteins in the soluble fraction of immature rat brains were characterized and compared. Based upon criteria of Sephadex G-200 chromatography, electrofocusing and immunological reactivity, several separable species of vinblastine-binding protein were isolated. By contrast, these same procedures yielded only one protein band or elution peak to which [14C]colchicine could be tightly bound. This colchicine-binding protein peak coincided, in part, with one of the protein peaks to which [3H]vinblastine was tightly bound. Rabbit antiserum against soluble brain proteins precipitated by vinblastine sulfate contained antibodies which reacted with colchicine-binding protein. Thus, despite apparent differences in physical properties between the bulk of the vinblastine-binding proteins and the colchicine-binding protein, the vinblastine sulfate-precipitated protein antigens gave rise to antibodies capable of forming an immune complex with colchicine-binding protein.  相似文献   

7.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

8.
Tubulin has been purified from human blood and tonsil lymphocytes. Using gel filtration, the molecular weight of human lymphocyte tubulin was estimated to be 119 000. The proteins was shown to consist of two subunits, with molecular weights of 61 000 and 58 000 comparable to the α and β polypeptides of human brain tubulin. A partial identity reaction was observed between lymphocyte tubulin and human tubulin when tested by double immunodiffusion against a rabbit anti-human brain tubulin antibody. In the presence of GTP, the purified protein polymerized to form microtubules. Tubulin was localized to the cell's juxtacentriolar region by immunofluorescence and electron microscopy. When assayed by a colchicine-binding assay corrected for time decay, the binding affinity was 1.50 ± 0.86 · 106M?1 and a level in normal lymphocytes of 1.21 · 10?2 ± 0.79 g/g of soluble protein was determined. Since chronic lymphocytic leukemia lymphocytes have an anomalous capping behavior as well as an unusual susceptibility to colchicine toxicity, the properties and levels of tubulin were determined in these cells. Similar values were obtained for the level, decay rate, molecular weight, and Ka for colchicine as for normal lymphocytes. Chronic lymphocytic leukemia lymphocyte tubulin polymerized in a normal fashion. It thus appears that a decrease in the quantity or function of tubulin does not account for these anomalies in the chronic lymphocytic leukemia lymphocyte.  相似文献   

9.
Previous in vivo studies showed that microtubules are involved in the cellular action of vasopressin. In order to analyze the role of renal medullary microtubules, a system was developed which would allow the study of the assembly of tubulin in renal medulla extracts into microtubules in vitro. The assembly of tubulin into microtubules occurred in renal medullary cytosol (100 000 times g supernatant) under specific conditions which include pre-concentration of cytosol by ultrafiltration, the presence of ethylene glycol bis(2-aminoethyl)ether tetraacetic acid (EGTA) and 4 M glycerol, and warming at 37 degrees C. Formation of microtubules, which sedimented at 100 000 times g, was proved by (a) an increase in the apparent [3H]colchicine-binding activity of depolymerized pellets, (b) appearance of typical microtubules as shown by electron microscopy, and (c) by the increase in the quantity of microtubular protein analyzed by polyacrylamide gel electrophoresis. Vinblastine at a concentrationof 10(-6) M completely blocked formation of microtubules. A slight increase of ionized calcium in the polymerization mixture also prevented microtubule assembly; this inhibitory effect of ionized calcium was present at concentrations as low as 10(-4) M. Blockade of microtubule assembly by the increase in concentration of ionized calcium or by vinblastine may be the basis of known inhibitory effect of these two agents upon the hydroosmotic effect of vasopressin in vivo.  相似文献   

10.
Membrane-bound tubulin in brain and thyroid tissue.   总被引:26,自引:0,他引:26  
Brain and thyroid tissue contain membrane-bound colchicine-binding activity that is not due to contamination by loosely bound cytoplasmic tubulin. This activity can be solubilized to the extent of 80 to 90% by treatment with 0.2% Nonidet P-40 with retention of colchicine binding. Extracts so obtained contain a prominent protein band in disc gel electrophoresis that co-migrates with tubulin. Membranes, and the solubilized protein therefrom, exhibit ligand binding properties like tubulin; for colchicine the KA is approximately 1 X 10(6) M-1 in brain and approximately 0.6 X 10(6) M-1 in thyroid; for vinblastine the KA is approximately 8 X 10(6) M-1 for both tissues; and for podophyllotoxin the Ki is approximately 2 X 10(-6) M for both tissues. Displacement by analogues of colchicine is of the same order as for soluble tubulin. Although membrane-bound colchicine-binding activity shows greater thermal stability and a higher optimum binding temperature (54 degrees versus 37 degrees) than soluble tubulin, this appears to be the result of the membrane environment since the solubilized binding activity behaves like the soluble tubulin. Antibody against soluble brain tubulin reacts with membranes and solubulized colchicine-binding activity from both brain and thyroid gland. We conclude that brain and thyroid membrane preparations contain firmly bound tubulin or a very similar protein.  相似文献   

11.
Microtubule protein was measured in mouse brain homogenates by quantitative colchicine binding. Neonatal animals contained more than twice the amount of brain tubulin as adult mice. The percentage of colchicine-binding protein which was polymerized was determined by extracting brain at room temperature into a medium designed to stabilize intact microtubules. Under identical conditions and tubulin concentrations, neonatal brain tubulin (colchicine-binding activity) had a greater proportion of the total extracted in an apparently polymerized state (pelletable by centrifugation) than did adult brain. A slight variation in the ratio of assembled to unassembled tubulin was observed with varying protein concentration (volume of extract), indicating that the values obtained may not reflect exactly the in vivo situation, because a rapid equilibration takes place upon homogenization. At all protein concentrations, the neonatal brain extracts contained a significantly greater proportion of assembled tubulin than did adult brain. This proportion began to fall at 5 days postnatal and reached the adult level at 30 days. The tubulin assembled/not assembled ratios were not altered by addition of nucleoside triphosphates, additional EGTA, or sulfhydryl protecting agents, and did not vary with preparation times of 30–90 min. The colchicine-binding reaction and decay of colchicine-binding activity with time were similar in extracts of different aged mouse brains, with neonatal slightly more stable than adult. Pools of tubulin from any age which were soluble at room temperature (unpolymerized) could not repolymerize well in vitro when incubated with GTP at 37 °C, whereas pools of tubulin which were sedimentable at room temperature (polymerized) could be redissolved at 0 °C and readily reassembled at 37 °C. The neonatal extract tubulin was thus more polymerization competent than the adult extracts; this correlates with a greater proportion of assembled tubulin in extracts at room temperature and possibly in vivo.  相似文献   

12.
The interaction of tubulin-microtubule poison complexes with anti-tubulin antisera has been investigated using radioimmunoassay. The binding of the major antiserum used in this study to tubulin does not interfere with the binding of colchicine to the tubulin or affect the decay of the colchicine-binding activity of the tubulin. Conversely, if colchicine is incubated with the tubulin, forming tubulin-colchicine complexes, the tubulin-colchicine complexes are less efficient competitors for antibody-binding sites than tubulin alone. This is the result of the formation of specific colchicine-tubulin complexes, since tubulin, incubated with lumicolchicine or isocolchicine, behaves as if the tubulin were incubated alone in the radioimmunoassay. When tubulin is incubated with other microtubule poisons, podophyllotoxin or vinblastine, the tubulin-drug complexes have diminished ability to compete with tubulin as did the tubulin-colchicine complexes. These changes observed in the binding of tubulin-microtubule poison complexes to anti-tubulin antisera in a tubulin radioimmunoassay suggest that the binding of colchicine, podophyllotoxin, or vinblastine to tubulin induces subtle conformational changes on the surface of the tubulin dimer involving antigenic determinant sites.  相似文献   

13.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

14.
The usual measurement of liver tubulin by the colchicine-binding assay does not take into account the accelerated decay of the colchicine-binding capacity of tubulin when liver supernatants, especially those containing microtubule-derived tubulin, are incubated at 37°C. This results in marked underestimations. Our findings indicate that this alteration is due to an inhibitor of colchicine-tubulin binding in liver supernatants that is probably extracted from particulate fractions. The inhibitory activity is decreased by dilution of the supernatants and by increasing the concentration of colchicine. However, the former modification decreases the sensitivity of the assay and the latter increases the nonspecific binding of colchicine to liver proteins other than tubulin. Assessment of the decay and correction for it by calculating the initial binding capacity results in complete recovery of brain tubulin from liver supernatants and values for microtubule-derived tubulin that closely correspond to those expected from simultaneous morphometric assessment of liver microtubules by electron microscopy. The modified method also indicates that the fraction of liver tubulin assembled in microtubules is greater than previously reported.  相似文献   

15.
Tubulin from eggs and embryos of the Mexican axolotl was characterized by electrophoresis and colchicine binding. In urea-polyacrylamide gel electrophoresis, soluble axolotl egg tubulin migrated as two bands, identical to tubulins from sea urchin sperm and Drosophila eggs. However, in SDS-containing gels, on which the α and β subunits of standard tubulins were well resolved, axolotl egg tubulin migrated as a single band with an apparent molecular weight of 53,500. The method of disruption of the eggs affected both yield of tubulin from vinblastine sulfate precipitates and stability of the colchicine binding activity. The colchicine binding activity of soluble tubulin from gently disrupted eggs was specific and of high affinity, with properties similar to those reported for other tubulins. The tubulin pool in unfertilized eggs was determined to be approximately 2 μg/egg; the level decreased 20% after initiation of cleavage and then remained constant through development to postneurula stages. The colchicine binding activity of soluble tubulin from embryos was much less stable than that of unfertilized eggs and decreased further during development. No differences were found in properties of tubulin from eggs of several strains of normally pigmented axolotls; however, tubulin from albino eggs showed slightly different properties in both electrophoresis and colchicine binding. The colchicine binding activity of soluble tubulin accounts for only half the total activity in axolotl eggs; they possess, in addition, a particulate nontubulin colchicine binding activity.  相似文献   

16.
The binding of vincristine, vinblastine and colchicine to tubulin   总被引:13,自引:0,他引:13  
Preparations of tubulin were examined for their ability to bind vincristine, vinblastine, and colchicine, as measured by adsorption on DEAE impregnated filter paper. Vincristine and vinblastine were found to bind very rapidly with tubulin (<5 min), while colchicine took considerably longer (>4 hr). When varying concentrations of the alkaloids were employed, and the data examined on a Scatchard plot, it was found that colchicine had an association constant of 1.8 × 106 liters/mole, while vinblastine and vincristine had constants of 6.0 × 106 liters/mole and 8.0 × 106 liters/mole respectively. In addition, it was found that the ratio of molar binding of colchicine was always twice that of vinblastine or vincristine.  相似文献   

17.
The relative amount of free and microtubule-associated tubulin in tissue culture cells was determined by colchicine binding. Both microtubules and tubulin were stabilized in a dilute homogenate containing 50% glycerol and 5% dimethylsulfoxide. Microtubules were separated by sedimentation at 100,000g for 10 min in a benchtop ultracentrifuge and then depolymerized to tubulin. Colchicine binding to free tubulin could be performed only after dilution of the organic solvents present to prevent a 70% reduction in apparent affinity of tubulin for colchicine. Tubulins purified from rat brain, human skin fibroblasts, and rat GH3 cells were each homogeneous and similar in molecular weight, affinity for DEAE-cellulose, and apparent affinity for colchicine. Microtubules contained 34–41% of tissue culture cell tubulin. Colchicine (10?6 to 10?5m) and incubation at 4°C reduced microtubule-derived tubulin to less than 6% of expected.  相似文献   

18.
At low concentrations, vinblastine binds rapidly and reversibly to a very limited number of high affinity sites on steady-state bovine brain microtubules (mean Kd, 1.9 × 10?6m; 16.8 ± 4.3 vinblastine binding sites per microtubule) which appear to be located at one or both ends of the microtubules. At high concentrations, vinblastine binds to a high binding capacity class of sites of undetermined affinity, located on helical strands of protofilaments which form at the ends of depolymerizing microtubules, and/or along the surface of the microtubules. Substoichiometric inhibition of microtubule assembly, which occurs at low vinblastine concentrations, appears to be due to the binding of vinblastine to the high affinity class of sites. Fifty per cent inhibition of tubulin addition to the net assembly ends of steady-state microtubules occurred at 1.38 × 10?7m-drug, and at this concentration, 1.16 ± 0.27 molecules of vinblastine were bound to the high affinity class of sites. Vinblastine appeared to bind directly to the microtubule ends, and our results indicate that vinblastine inhibits the assembly of steady-state bovine brain microtubules by binding rapidly and with high affinity to one or two molecules of tubulin at the net assembly ends. Splaying and peeling of protofilaments at microtubule ends and the active depolymerization of microtubules occurred only at vinblastine concentrations greater than 1 × 10?6 to 2 × 10?6m. This action of vinblastine is associated with and may be due to the binding of vinblastine to the high capacity class of sites. Both actions of vinblastine may be due to the binding of vinblastine to the same binding sites on the tubulin molecule, with the sites exhibiting either a high or low affinity depending upon the location in the microtubule.  相似文献   

19.
A colchicine-binding component was detected in vegetative amoebae of Dictyostelium discoideum by using a Millipore-filter assay. The colchicine-binding activity is temperature-and time-dependent, maximum binding occurring at 22-35 degrees C after 60 min incubation. Further increases in temperature are without effect on the extent of binding, but bound colchicine is released with increased time of incubation. Furthermore, colchicine-binding activity itself decreased in the high-speed supernatant from D. discoideum, with half the activity being lost in approx. 2.5h. Several lines of evidence, including the saturation kinetics of colchicine binding, enhancement of colchicine binding by tartrate, insensitivity to lumicolchicine, precipitation of the binding protein by vinblastine and behaviour of the binding protein on DEAE-cellulose and Sephadex resins, suggest that the colchicine-binding protein may be tubulin.  相似文献   

20.
In this communication, we report the presence of a unique colchicine-binding activity in the polysomes of rat brain. This drug-binding property, is somewhat similar to that of tubulin isolated from many sources; however, it differs in several bio-chemical characteristics such as (i) thermal stability of colchicine-binding site, (ii) protection of binding site by vinblastine and (iii) time required for binding equilibration. Such binding of colchicine to the polysomes is most probably due to the presence of a nascent peptide chain of tubulin in the polysome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号