首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directionality theory suggests that demographic entropy, defined in a way analogous to thermodynamic entropy, is as important as the Malthusian parameter in determining life history evolution in an age-structured population. In particular, it suggests that entropy should increase in equilibrium species and decrease in opportunistic species. This theory has been applied to explain the evolution of body size and of senescence. It has been claimed recently that this theory has been validated by a simulation study, but it is argued here that this study reveals substantial flaws in directionality theory and that the Malthusian parameter rather than entropy is the appropriate tool in the study of life history evolution.  相似文献   

2.
Reactivation of 02 evolution function has been studied in PS-2 particles after complete removal of Mn and water soluble 10, 17, 24, 33 kDa proteins, It has been shown that 02 evolution function in such particles can be reactivated by adding 5 μM Mn2 and 20 mM Ca2(+). Preliminary illumination of the sample is necessary to exhibit the reactivation effect of 02 evolution. The maximum value of the reactivation of 02 evolution rate is about 60% of the control. Upon illumination of the reactivated particles with flashes of 1s duration and at a frequency of 0,1 Hz, 02 evolution occurs according to the mechanism analogous to that in the initial parties of PS 2. Thus the reactivation of water oxidation and 02 evolution after complete removal of Mn and water soluble 10, 17, 24, 33 kDa proteins resulting in the suppression of 02 evolution function has been shown for the first time and it can serve as a basic approach for profound investigation of the mechanism of photosynthetic water oxidation.  相似文献   

3.
4.
Darwin's theory of evolution by natural selection has been supported by molecular evidence and by experimental evolution of viruses. However, it might not account for the evolution of all life, and an alternative model of evolution through symbiotic relationships also has gained support. In this review, the evolution of plant viruses has been reinterpreted in light of these two seemingly opposing theories by using evidence from the earliest days of plant virology to the present. Both models of evolution probably apply in different circumstances, but evolution by symbiotic association (symbiogenesis) is the most likely model for many evolutionary events that have resulted in rapid changes or the formation of new species. In viruses, symbiogenesis results in genomic reassortment or recombination events among disparate species. These are most noticeable by phylogenetic comparisons of extant viruses from different taxonomic groups.  相似文献   

5.
VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.  相似文献   

6.
There has been much recent interest in the role for genetic conflicts to drive the evolution of genetic systems. Here we consider the evolution of hermaphroditism in the scale insect tribe Iceryini and the suggestion that this has been driven by conflict between a female and an infectious male tissue derived from her father. We perform an inclusive-fitness analysis to show that, owing to genetic relatedness between father and daughter, there is scope for collaboration as well as conflict over the establishment of the infectious tissue. We also consider the evolutionary interests of a maternally inherited bacterial symbiont that has been implicated in mediating the tissue's establishment. More generally, our analysis reveals that genetic conflicts can drive the evolution of hermaphroditism.  相似文献   

7.
Protein evolution shows interesting strategies to be used in protein design. During evolution the creation of new proteins has been accomplished by combining different peptide modules, i.e. evolutionary successful stable folding units. Thereby, the evolution of proteins has been greatly enhanced. Today this mechanism of recombining optimized building blocks to design new proteins has been introduced into applied molecular evolution.  相似文献   

8.
On the basis of paleological evidence, it has been suggested that biological evolution need not necessarily be characterized by gradual change. Rather, evolutionary history may display saltatory periods of rapid speciation alternating with periods of relative quiescence, the whole dynamic being called punctuated equilibria. The empirical evidence that has been presented in support of this hypothesis has been the object of a vigorous dispute. Mathematical investigations of complex models of biological evolution that contain random elements have demonstrated that these systems can display saltatory behavior. In this paper we address a more abstract question: can saltations occur in the evolution of very simple, deterministic mathematical systems that function in a constant environment? The answer appears to be yes. Saltations appear as a natural dynamical behavior in the evolution of simplistic information processing networks. We stress that these networks do not constitute a model of biological evolution. However, the appearance of saltations in such simple systems suggests that their appearance in a process as complex as biological evolution is not surprising.  相似文献   

9.
A statistical test of unbiased evolution of body size in birds   总被引:1,自引:0,他引:1  
Abstract.— Of the approximately 9500 bird species, the vast majority is small-bodied. That is a general feature of evolutionary lineages, also observed for instance in mammals and plants. The avian interspecific body size distribution is right-skewed even on a logarithmic scale. That has previously been interpreted as evidence that body size evolution has been biased. However, a procedure to test for unbiased evolution from the shape of body size distributions was lacking. In the present paper unbiased body size evolution is defined precisely, and a statistical test is developed based on Monte Carlo simulation of unbiased evolution. Application of the test to birds suggests that it is highly unlikely that avian body size evolution has been unbiased as defined. Several possible explanations for this result are discussed. A plausible explanation is that the general model of unbiased evolution assumes that population size and generation time do not affect the evolutionary variability of body size; that is, that micro- and macroevolution are decoupled, which theory suggests is not likely to be the case.  相似文献   

10.
Colegrave N  Collins S 《Heredity》2008,100(5):464-470
The suggestion that there are characteristics of living organisms that have evolved because they increase the rate of evolution is controversial and difficult to study. In this review, we examine the role that experimental evolution might play in resolving this issue. We focus on three areas in which experimental evolution has been used previously to examine questions of evolvability; the evolution of mutational supply, the evolution of genetic exchange and the evolution of genetic architecture. In each case, we summarize what studies of experimental evolution have told us so far and speculate on where progress might be made in the future. We show that, while experimental evolution has helped us to begin to understand the evolutionary dynamics of traits that affect evolvability, many interesting questions remain to be answered.  相似文献   

11.
During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure-function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO(2)-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture.  相似文献   

12.
The results of anthropological research into human evolution have been discussed. Only two research places in CSSR have been engaged with the human evolution: the Department Anthropos in the Moravian Museum in Brno and the Laboratory of Evolutionary Biology of the Czechoslovak Academy of Sciences in Praha. The first of them has been mainly concerned with the paleontological and archeological research reported elsewhere. In the second, the following main questions of human evolution have been discussed: the evolution of bipedal locomotion, the morphological aspects, both qualitative and quantitative ones, the locomotion in other primates and various aspects of their behaviour have been studied. In this connection also various questions of the evolution the of human mind and social consciousness were studied. Special attention has been paid to role of neoteny in the evolution of man and to the import of synergism of the main evolutionary factors. As one of the main results is the principle of sociogenesis viewed and its various aspects. Its top product is human consciousness integrating the most important results of human thinking. Much attention has been paid to its evolution on the basis of the principle of reflection. Also the philosophical and ideological consequences of the sociogenesis as the main trend in the evolution of organisms have been elaborated in detail.  相似文献   

13.
Maternal care has been suggested to evolve more readily in haplodiploid populations. Because maternal care appears to have been a prerequisite for the evolution of eusociality, this effect potentially explains the apparent preponderance of haplodiploidy among eusocial taxa. Here, I use a kin selection approach to model the evolution of maternal care in diploid and haplodiploid populations. In contrast to previous suggestions, I find that haplodiploidy may inhibit as well as promote the evolution of maternal care. Moreover, I find that the haplodiploidy effect vanishes in outbred populations if gene effects average rather than add together. I confirm these analytical results using numerical simulation of an explicit population genetics model. This analysis casts doubt upon the idea that haplodiploidy has promoted the evolution of maternal care and, consequently, the evolution of eusociality.  相似文献   

14.
Biologists have often used simple analogies to help them think about complex processes in evolution. The mutual evolution of predator and prey has often been conceived of as an arms race. An increase in the armaments of one contestant in the race simply causes the other contestant to increase armaments in response. This analogy implies that the evolution in the predator population of improved abilities to capture prey should result in an evolutionary response in the prey that improves its abilities to avoid capture. Conversely, the evolution of improved escape abilities should result in increased capture abilities. The general applicability of this arms race analogy has not been supported by mathematical models of predatorprey interactions.  相似文献   

15.
The role of introns in evolution   总被引:6,自引:0,他引:6  
J H Rogers 《FEBS letters》1990,268(2):339-343
What are the roles of 'classical' introns in the evolution of nuclear genes, and what was the origin of these introns? Exon shuffling has been important in the evolution of cell surface and extracellular proteins, but the evidence for it in respect of intracellular proteins is weak. Intron distributions imply that some introns have been removed while others have been inserted in the course of evolution: ancestral patterns of introns may thus have been obscured. Recent evidence on the self-splicing and reverse-splicing abilities of Group II introns supports the hypothesis that these could have been the ancestors of classical introns.  相似文献   

16.
Comparative studies of social insects and birds show that the evolution of cooperative and eusocial breeding systems has been confined to species where females mate completely or almost exclusively with a single male, indicating that high levels of average kinship between group members are necessary for the evolution of reproductive altruism. In this paper, we show that in mammals, the evolution of cooperative breeding has been restricted to socially monogamous species which currently represent 5 per cent of all mammalian species. Since extra-pair paternity is relatively uncommon in socially monogamous and cooperatively breeding mammals, our analyses support the suggestion that high levels of average kinship between group members have played an important role in the evolution of cooperative breeding in non-human mammals, as well as in birds and insects.  相似文献   

17.
Recent models of mate preference evolution suggest that direct selection on alleles at preference loci and correlated evolution of preference with locally adapted mating cues are more likely to drive the evolution of assortative mate preference than reinforcement. Mate preference evolution in mimetic Heliconius butterflies has been attributed to all three forms of selection, but here we show that reinforcement has been critical. By examining geographical variation in assortative mating and male mate preference among seven populations of three hybridizing Heliconius species from Costa Rica, we found pronounced character displacement of preference such that sexual isolation was enhanced in areas of interspecific contact. Of the different explanations for the evolution of assortative mate preference, only reinforcement is dependent on interspecific contact in this system. Thus, the observed pattern of reproductive character displacement of mate preference is best explained as a product of indirect selection generated by natural selection against nonmimetic hybrids.  相似文献   

18.
While the evolution of cooperative breeding systems (where non-breeding helpers participate in rearing young produced by dominant females) has been restricted to lineages with socially monogamous mating systems where coefficients of relatedness between group members are usually high, not all monogamous lineages have produced species with cooperative breeding systems, suggesting that other factors constrain the evolution of cooperative breeding. Previous studies have suggested that life-history parameters, including longevity, may constrain the evolution of cooperative breeding. Here, we show that transitions to cooperative breeding across the mammalian phylogeny have been restricted to lineages where females produce multiple offspring per birth. We find no support for effects of longevity or of other life-history parameters. We suggest that the evolution of cooperative breeding has been restricted to monogamous lineages where helpers have the potential to increase the reproductive output of breeders.  相似文献   

19.
Fisheries-induced evolution has become a major branch of the research on anthropogenic and contemporary evolution. Within the conservation context, fisheries-induced evolution has been hypothesized to negatively affect the persistence and recovery potential of depleted populations, but this has not been explicitly investigated. Here, we investigate how fisheries-induced evolution of Atlantic cod (Gadus morhua L.) life histories affects per capita population growth rate, a parameter negatively correlated with extinction risk. We simulate the evolutionary and ecological dynamics of a cod population for a 100 year period of size-selective harvesting, followed thereafter by 300 years of recovery. To evaluate the relative importance of harvest-induced evolution, we either allowed life histories to evolve during and after the fishing period, or we assumed that fisheries-induced evolution was absent. Population growth rates did not differ appreciably between the evolutionary and non-evolutionary simulation scenarios, despite the emergence of rather pronounced differences in life histories. The underlying reason was that in the absence of fishing the cumulative lifetime reproductive outputs were very similar among differing life histories. The results suggest that fisheries-induced evolution might not always have as clear-cut an effect on population growth rate as previously anticipated.  相似文献   

20.
Owing to its special mode of evolution and central role in the adaptive immune system, the major histocompatibility complex (MHC) has become the focus of diverse disciplines such as immunology, evolutionary ecology, and molecular evolution. MHC evolution has been studied extensively in diverse vertebrate lineages over the last few decades, and it has been suggested that birds differ from the established mammalian norm. Mammalian MHC genes evolve independently, and duplication history (i.e., orthology) can usually be traced back within lineages. In birds, this has been observed in only 3 pairs of closely related species. Here we report strong evidence for the persistence of orthology of MHC genes throughout an entire avian order. Phylogenetic reconstructions of MHC class II B genes in 14 species of owls trace back orthology over tens of thousands of years in exon 3. Moreover, exon 2 sequences from several species show closer relationships than sequences within species, resembling transspecies evolution typically observed in mammals. Thus, although previous studies suggested that long-term evolutionary dynamics of the avian MHC was characterized by high rates of concerted evolution, resulting in rapid masking of orthology, our results question the generality of this conclusion. The owl MHC thus opens new perspectives for a more comprehensive understanding of avian MHC evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号