首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Gel-filtration results indicate that the major component of inhibitory-factor preparations isolated by dissociation of the troponin complex consisted of a protein of subunit weight 23000 daltons. By the same procedure a molecular weight of 18000 was obtained for the calcium-sensitizing factor. 2. The inhibitory factor is specific for the actomyosin type of ATPase and ITPase. It is effective on desensitized actomyosin, natural actomyosin and intact myofibrils. 3. For inhibition, the actomyosin ATPase must be stimulated by Mg(2+), Ca(2+) or Mn(2+). The Co(2+)-, Cd(2+)- or Zn(2+)-stimulated ATPases are not affected. 4. Biological activity is stable to treatment with dissociating agents, heat, pH11, pH1 and carboxymethylation. 5. Increasing amounts of actin, but not myosin or tropomyosin, progressively neutralize the inhibitory activity when added to desensitized actomyosin or myofibrils.  相似文献   

2.
Interactive effects between calmodulin activation of 30 S dynein ATPase activity and activation by heat or N-ethylmaleimide (NEM) have been studied. Addition of calmodulin during the heat treatment caused a larger increment in ATPase activity (above that caused by heating alone) than did addition of calmodulin after the heat treatment. Similar results were obtained in experiments where activation was caused by NEM treatment. For both the heat and NEM treatments, the synergistic effect of calmodulin when present during the treatment was Ca2+ dependent although activation of ATPase activity by either treatment alone was not Ca2+ dependent. Heating 14 S dynein inhibited its ATPase activity and reduced the effectiveness of calmodulin as an activator. The activating effect of calmodulin added after heat or NEM treatments was about the same as if the calmodulin was present during the treatment, i.e., interactive effects were minimal. Concentrations of NEM that had little effect on the ATPase activity of 14 S dynein largely eliminated the ability of calmodulin to activate its ATPase activity. Chromatography of the heat-treated 14 S dynein on calmodulin-Sepharose 4B indicated that the loss of sensitivity of 14 S dynein ATPase to calmodulin was not due to loss of ability of the dynein to bind to calmodulin. Retention of calmodulin binding ability was also shown for heat-treated 30 S dynein. These results suggest that calmodulin and heat/NEM activate solubilized 30 S dynein ATPase by separate mechanisms which may include a common process.  相似文献   

3.
A culture flask was designed for the microcalorimetric measurements of tissue cells by an MS 80 standard calvet microcalorimeter. Tissue cells cultured in this flask behaved in the same manner as in the common culture flask used in cytobiological studies. The thermograms of human adenocarcinoma gastric cells (SGc 7901) and HeLa cells were obtained. The heat output power of SGc 7901 cells continuously increased for 70 h with an initial cell number of 3.0 X 10(5). The thermogram was reproducible under strictly controlled conditions. The relationship between the heat output power and the number of SGc 7901 cells within 48 h was obtained. The heat output power was 40 pW/cell to 49 pW/cell when the cell number was in the range 4.5 X 10(5) to 10.4 X 10(5). It was 62.3 +/- 2.9 pW/cell for HeLa cells when the cell number was 6 X 10(5).  相似文献   

4.
Rabbit antiserum prepared against an ATPase-containing tryptic fragment of dynein by Ogawa and Mohri (J. Biol. Chem. 250: 6476-6483) specifically inhibited the ATPase activity of dynein 1 and not that of dynein 2. Varying amounts of this antidynein 1 serum were added to demembranated sperm while they were swimming in reactivating solution containing 1 mM ATP. The sperm continued to form regularly propagated flagellar bending waves, but the beat frequency decreased gradually with time, the greater part of the change occurring in the first 15 min. The beat frequency after 1 h was a function of the amount of antiserum used, and could be as low as 1 Hz. The waveforms of the treated sperm resembled those of normal reactivated sperm except that the bend angles of both the principal and reverse bends were larger in the proximal portion of flagellum. The ATPase activity and corresponding beat frequency of sperm which had been pretreated with varying amounts of antidynein 1 serum for 15 min at 0 degrees C and then diluted were both decreased as a function of the amount of antiserum added, the ATPase activity of homogenized, nonmotile sperm also decreased upon pretreatment with antiserum, but the percentage decrease was less than for motile sperm. For moderate to low concentrations of antiserum, the rates of reaction with motile and with rigor sperm were almost identical. The overall results suggest that antidynein 1 inhibits the functioning of the dynein arms, probably by blocking the ATPase sites of the dynein 1.  相似文献   

5.
The relation between ATPase rate and substrate concentration was investigated for myofibrils with varying amounts of added HMM. There was a biphasic, 3 to 5-fold increase in ATPase in the absence of Ca++. In the absence of added HMM, the peak activity occurred at ≤ 0.1 mM MgATP. With increasing concentrations of HMM, the position and magnitude of the ATPase peak shifted to larger substrate concentrations and higher rates. The cofactor activity of regulated actin in myofibrils is activated to a similar degree by Ca++ as by HMM (rigor links). SDS gel electrophoretic patterns of myofibrils mixed with HMM indicated the soluble HMM binds to myofibrils at 0.1 mM MgATP and is dissociated at higher MgATP concentrations. Thus, in well-regulated myofibrils in the absence of Ca++ actin cofactor activity can be activated by rigor complexes.  相似文献   

6.
The effects of the SH-groups binding agent p-chloromercurybenzoate (rho CMB) and the SH-containing compounds dithiothreitol (DTT), beta-mercaptoethanol (ME) and reduced glutathione (GSH) on activation by Mg2+ and K+ of ATPase in plasma membrane preparations from corn sprout root cells were studied. Rho CMB inhibited the ATPase activity, the degree of inhibition being directly dependent on the increase of the inhibitor concentration (from 10(-6) up to 10(-4) M); the inhibition was eliminated by the SH-containing agents (25 mM). DTT and ME added to the homogenization medium and ME added to the reaction mixture produced different effects on the ATPase activity of the membranes depending on the nature of the cations added. In the absence of the additives the ATPase activity was somewhat decreased, showing a sharp rise in the presence of Mg2+; an addition of K+ to a Mg2+-containing medium further increased the enzyme activity. GSH had no effect on the ATPase activation by the cations.  相似文献   

7.
(Na+ + K+)-dependent ATPase activity, heat production and oxygen consumption were increased by 59%, 62% and 75% respectively in hepatocytes from tri-iodothyronine-treated rats. Ouabain at concentrations of 1 and 10 mM decreased oxygen uptake by 2--8% in hepatocytes from euthyroid rats and by 5--15% in hepatocytes from hyperthyroid animals. Heat output was decreased by 4--9% with the glycoside in isolated liver parenchymal cells from the control animals and by 11% in the cells from the tri-iodothyronine-treated animals. These results do not support the hypothesis that hepatic (Na+ + K+)-ATPase plays a major role in increased heat production in hepatocytes from hyperthyroid rats.  相似文献   

8.
The (Na+ + Mg2+)-ATPase purified from Acholeplasma laidlawii B membranes was reconstituted into large, unilamellar vesicles formed from dimyristoylphosphatidylcholine (DMPC) and varying amounts of cholesterol or epicholesterol. The ATP hydrolytic activity of the reconstituted enzyme was then determined over a range of temperatures and the phase state of the DMPC in the ATPase-containing vesicles was characterized by high-sensitivity differential scanning calorimetry. In the vesicles containing only DMPC, the ATPase activity is higher in association with lipids in the liquid-crystalline state than with gel-state phospholipids, resulting in a curvilinear, biphasic Arrhenius plot with a pronounced change in slope at the elevated gel to liquid-crystalline phase transition temperature of the DMPC. The incorporation of increasing amounts of cholesterol into the DMPC vesicles results in a progressively greater degree of inhibition of ATPase activity at higher temperatures but a stimulation of activity at lower temperatures, thus producing Arrhenius plots with progressively less curvature and without an abrupt change in slope at physiological temperatures. As cholesterol concentration in the ATPase-DMPC vesicles increases, the calorimetric phase transition of the phospholipid is further broadened and eventually abolished. The incorporation of epicholesterol into the DMPC proteoliposomes results in similar but less pronounced effects on ATPase activity, and its effect on the phase behavior of the DMPC-ATPase vesicles is also similarly attenuated in comparison with cholesterol. Moreover, cholesterol added to the purified enzyme in the absence of phospholipid does not show any significant effect on either the activity or the temperature dependence of the detergent-solubilized ATPase. These findings are consistent with the suggestion that cholesterol exerts its effect on the ATPase activity by altering the physical state of the phospholipid, since the ordering effect of cholesterol (or epicholesterol) on liquid-crystalline lipid results in a reduction of ATPase activity while the disordering of gel-state lipid results in an increase in activity.  相似文献   

9.
Y M Galante  S Y Wong  Y Hatefi 《Biochemistry》1981,20(9):2671-2678
Mitochondrial ATPase inhibitor protein (IF1) reacts reversibly with complex V and inhibits up to 90% of its ATPase activity. Both the rate and extent of inhibition are pH and temperature dependent and increase as the pH is lowered from pH 8 tp 6.7 (the lowest pH examined) or as the temperature is increased from 4 to 36 degrees C. Nucleotide triphosphates plus Mg2+ ions are required for inhibition of complex V ATPase activity by IF1. In the presence of Mg2+ ions, the effectiveness order of nucleotides is ATP greater than ITP greater than GTP greater than UTP. Highly purified complex V, which requires added phospholipids for expressing ATPase and ATP-Pi exchange activities, cannot be inhibited by IF1 plust ATP-Mg2+ unless phospholipids are also added. This indicates that the active state of the enzyme is necessary for the IF1 effect to be manifested, because F1-ATPase, which does not contain nor require phospholipids for catalyzing ATP hydrolysis, can be inhibited by IF1 plus ATP-Mg2+ in the absence of added phospholipids. The IF1-inhibited complex V, but not IF1-inhibited F1-ATPase, can be reactivated by incubation at pH greater than 7.0 in the absence of ATP-Mg2+. The reactivation rate is pH dependent and is influenced by temperature and enzyme concentration. Complex V preparations contain small and variable amounts of IF1. This endogenous IF1 behaves the same as added IF1 with respect to conditions described above for inhibition and reactivation and can result in 25-50% inhibition in different complex V preparations. However, complex V lacking endogenous IF1 can be reconstituted from F0, F1, oligomycin sensitivity conferring protein, and phospholipids. Inhibition of this reconstituted preparation in the presence of ATP-Mg2+ depends entirely on addition of IF1. In general, the ATP-Pi exchange activity of complex V is more sensitive to the chemical inhibitors of F1-AtPase tha its ATPase activity. This is not so, however, for IF1. Under conditions that IF1 caused approximately 75% inhibition of ATPase activity of complex V, no more than 10% of the ATP-Pi exchange activity was inhibited.  相似文献   

10.
Quiescent 3Y1 cells in monolayer cultures were dispersed with trypsin-EDTA, suspended in various media, and the cellular heat production was measured in a flow-type microcalorimeter set at 37 degrees C. A linear relationship was found to exist between the number of cells applied to the microcalorimeter and the heat output. Increasing concentrations of bovine serum albumin (BSA) and of fetal calf serum (FCS) added in Dulbecco's modified Eagle's medium (DEM) enhanced the heat output to the same saturation level. Trypsin inhibitor added in DEM enhanced the heat output, but to a lower saturation level than FCS or BSA did, indicating that BSA has an activity to enhance cellular heat production by a mechanism other than neutralizing residual trypsin. The heat output was found to gradually decrease in the microcalorimeter. This reduction was not enhanced by a two-fold dilution of the medium (DEM plus FCS) with phosphate-buffered saline, indicating that this reduction is not caused by the depletion of nutrients and serum factors in the medium. Similarly, when cells were incubated for 155 or 220 min in suspension in DEM plus BSA at 37 degrees C and applied to the microcalorimeter, the heat output decreased. However, no significant reduction of the heat output was observed after holding the cells at 0 degree C in suspension for the same period. This and other facts suggest that depletion of O2 dissolved in the medium is involved in the gradual decrease in heat output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The rates of the ATPase [EC 3.6.1.3] reaction of the H-meromyosin-F-actin-relaxing protein system were measured in 2 mM MgCl2, 50mM KC1, and 10mM Tris-HC1 at pH 7.8 and 20 degrees in the presence and absence of 0.05-0.1 mM Ca2+ ions. The concentrations of H-meromyosin (HMM) and the F-actin-relaxing protein (F-A-PR) complex were 3.4 and 3 mg/ml, respectively, and the ATPase reaction was coupled with 4 mg/ml of pyruvate kinase [EC 2.7.1.40] and 1 or 20 mM phosphoenolpyruvate to regenerate ATP. The amount of ADP bound to HMM during the ATPase reaction was determined by measuring the amount of ADP remaining in the reaction mixture. The amount of ATP bound to HMM was determined by subtracting the amount of bound ADP from the total amount of nucleotides bound to HMM, which was measured by a rapid flow-dialysis method. The following results were obtained. 1. The ATPase activity of the HMM-F-A-RP system increased linearly with increase in the amount of ATP added, and was independent of the presence of 0.05 mM Ca2+, when the amount of ATP added was less than 1 mole/mole of HMM. In the presence of 0.05 mM Ca2+, the ATPase activity reached a maximal level when 1.2-1.5 mole of ATP was added per mole of HMM, and maintained this level even at 3 moles of added ATP/mole of HMM. In the presence of 3mM EGTA, the ATPase activity decreased with increase in the amount of ATP added, from 1.5 to 3 moles of ATP/mole of HMM, and reached the level of the HMM ATPase reaction at 3 moles of added ATP/mole of HMM. Similar results were observed when the concentration of HMM was maintained at 3.4 mg/ml and the concentration of the F-A-RP complex was decreased from 3 to 1 or 0.5 mg/ml.  相似文献   

12.
Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output during repeated bouts of short-term maximal exercise. On two separate occasions, seven healthy males performed two 30-s bouts of sprint exercise (sprints I and II), with 4 min of passive recovery in between, on a cycle ergometer. The sprints were performed in both a normal environment [18.7 (1.5) degrees C, 40 (7)% relative humidity (RH; mean SD)] and a hot environment [30.1 (0.5) degrees C, 55 (9)% RH]. The order of exercise trials was randomised and separated by a minimum of 4 days. Mean power, peak power and decline in power output were calculated from the flywheel velocity after correction for flywheel acceleration. Peak power output was higher when exercise was performed in the heat compared to the normal environment in both sprint I [910 (172) W vs 656 (58) W; P < 0.01] and sprint II [907 (150) vs 646 (37) W; P < 0.05]. Mean power output was higher in the heat compared to the normal environment in both sprint I [634 (91) W vs 510 (59) W; P < 0.05] and sprint II [589 (70) W vs 482 (47) W; P < 0.05]. There was a faster rate of fatigue (P < 0.05) when exercise was performed in the heat compared to the normal environment. Arterialised-venous blood samples were taken for the determination of acid-base status and blood lactate and blood glucose before exercise, 2 min after sprint I, and at several time points after sprint II. Before exercise there was no difference in resting acid-base status or blood metabolites between environmental conditions. There was a decrease in blood pH, plasma bicarbonate and base excess after sprint I and after sprint II. The degree of post-exercise acidosis was similar when exercise was performed in either of the environmental conditions. The metabolic response to exercise was similar between environmental conditions; the concentration of blood lactate increased (P < 0.01) after sprint I and sprint II but there were no differences in lactate concentration when comparing the exercise bouts performed in a normal and a hot environment. These data demonstrate that when brief intense exercise is performed in the heat, peak power output increases by about 25% and mean power output increases by 15%; this was due to achieving a higher pedal cadence in the heat.  相似文献   

13.
The effect of Li(I) on the metabolism of mitochondria isolated from Carassius auratus liver tissue was investigated by microcalorimetric method to provide evidence for mitochondria hypothesis of biporlar disorder (BPD) and to explore therapeutic mechanism of drug for treatment of BPD. Obvious stimulation induced by Li(I) on mitochondria metabolism was reflected by power-time (P-t) curves. The power-time curves of hepatic mitochondria metabolism without Li(I) could be divided into four parts: lag phase, active recovery phase, stationary phase, and decline phase. When Li(I) was added, the second heat peak occurred in a concentration-dependent sequence. Considering the first heat peak on the p-t curves, Li(I) in the range of therapeutic and lower concentration induced slight alterations in comparison with the characteristic heat peak observed in the control. However, Li(I) above the therapeutic concentration resulted in significant changes. Heat output increased with the concentration of Li(I), but the rate constant (k 2) and the maximum heat power (P max2) for the second heat peak reached maximum value in the range of therapeutic concentration. Mechanism of activation of mitoKatp was suggested and discussed.  相似文献   

14.
N. L. Feldman 《Planta》1968,78(3):213-225
Summary Heat hardening of leaves which leads to an increase in the heat resistance of their cells, also increases the heat resistance of their enzymes (urease, acid phosphatase, ATPase). As judged by the temperature reducing enzyme activity by 50%, the heat resistance increased by about 6° and 4°, respectively, for urease and acid phosphatase of cucumber, about 7° for acid phosphatase of wheat, and 1,5° for ATPase of Caragana. Increased heat resistance of acid phosphatase and ATPase caused by heat hardening was accompanied by a decrease in the activity ofthese enzymes. The activity of urease was not affected by heat hardening. It is assumed that the cause of this increase in thermal resistance of enzymes is a stabilization of protein macromolecules during heat hardening of leaves.  相似文献   

15.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

16.
Previous work from this laboratory had demonstrated the presence of endogenous morphine, strychnine and nicotine in the mammalian brain and human serum samples. Morphine is synthesised from tyrosine and strychnine and nicotine from tryptophan. This study examines the role of strychnine, nicotine and morphine in neuropsychiatric disorders. The blood levels of tyrosine, tryptophan, strychnine, nicotine and morphine were studied as also RBC membrane Na(+)-K+ ATPase activity. It was found that serum tyrosine levels were reduced and tryptophan levels elevated in all neuropsychiatric disorders studied with a reduction in RBC Na(+)-K+ ATPase activity. Nicotine was present in significant amounts in serum of patients with schizophrenia, CNS glioma and syndrome X with multiple lacunar state. Morphine was present in significant amounts only in the serum of patients with multiple sclerosis and MDP. Strychnine was present in significant amounts in the serum of patients with epilepsy, Parkinson's disease and MDP. The presence of nicotine and strychnine in significant amounts could be related to elevated tryptophan levels suggesting the synthesis of these alkaloids from tryptophan. Morphine was not detected in most of the disorders owing to low tyrosine levels noted in them. Na(+)-K+ ATPase inhibition noticed in most of the disorders could be related to decreased hyperpolarising morphinergic transmission and increased depolarising nicotinergic and strychinergic transmission. The role of morphine, strychnine and nicotine in the pathogenesis of these disorders in the setting of membrane Na(+)-K+ ATPase inhibition is discussed.  相似文献   

17.
Adenosine triphosphate hydrolysis by purified rubisco activase   总被引:15,自引:0,他引:15  
Activation of ribulose bisphosphate carboxylase/oxygenase (rubisco) in vivo is mediated by a specific protein, rubisco activase. In vitro, activation of rubisco by rubisco activase is dependent on ATP and is inhibited by ADP. Purified rubisco activase hydrolyzed ATP with a specific activity of 1.5 mumol min-1 mg-1 protein, releasing approximately stoichiometric amounts of ADP and Pi. Hydrolysis was highly specific for ATP-Mg and had a broad pH optimum, with maximum activity at pH 8.0-8.5. ATPase activity was inhibited by ADP but not by molybdate, vanadate, azide, nitrate, or fluoride. Addition of rubisco in either the inactive or activated form had no significant effect on ATPase activity. Incubation of rubisco activase in the absence of ATP resulted in loss of both ATPase and rubisco activation activities. Both activities were also heat labile, with 50% loss in activity after 5 min at 38 degrees C and complete inhibition following treatment at 43 degrees C. Both activities showed a sigmoidal response to ATP concentration, with half-maximal activity at 0.053 mM ATP. Rubisco activation activity was dependent on the concentrations of both ATP and ADP. The results suggest that ATPase activity is an intrinsic property of rubisco activase.  相似文献   

18.
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown "petite-negative" yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40 degrees C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles. 2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerol-grown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae. 3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the "petite-positive" yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126. 4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 muM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 muM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor. 5. We conclude that "petite-positive" and "petite-negative" yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   

19.
1. O-Iodosobenzoate and 2,2'-dithio bis-(5-nitropyridine) inhibited by about fifty per cent the ATPase activity of heat-activated chloroplast coupling factor 1 only when present during the heating but were without effect when added before or after the activation. Reversion of this inhibition was only obtained by a second heat treatment with 10 mM dithioerythritol. 2. The inhibition of the Ca2+-ATPase of coupling factor 1 by o-iodosobenzoate or 2,2'-dithio bis-(5-nitropyridine) was not additive with similar inhibitions obtained with the alkylating reagents iodoacetamide and N-ethylmaleimide. 3. The heat-activated ATPase of o-iodosobenzoate-treated coupling factor 1 had a higher Km for ATP, without modification of V. The modified enzyme was desensitized against the allosteric inhibitor ADP.  相似文献   

20.
Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p(3)-1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12 degrees C large variations (three- to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12 degrees C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to approximately 0.4 when the temperature was raised from 12 degrees C to 20 degrees C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号