首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NCBI database analysis indicated that the human C1orf41 protein (small heat shock-like protein-Hsp16.2) has sequence similarity with small heat shock proteins (sHsps). Since sHsps have chaperone function, and so prevent aggregation of denatured proteins, we determined whether Hsp16.2 could prevent the heat-induced aggregation of denatured proteins. Under our experimental conditions, recombinant Hsp16.2 prevented aggregation of aldolase and glyceraldehyde-3-phosphate dehydrogenase, and protected Escherichia coli cells from heat stress indicating its chaperone function. Hsp16.2 also formed oligomeric complexes in aqueous solution. Hsp16.2 was found to be expressed at different levels in cell lines and tissues, and was mainly localized to the nucleus and the cytosol, but to a smaller extent, it could be also found in mitochondria. Hsp16.2 could be modified covalently by poly(ADP ribosylation) and acetylation. Hsp16.2 over-expression prevented etoposide-induced cell death as well as the release of mitochondrial cytochrome c and caspase activation. These data suggest that Hsp16.2 can prevent the destabilization of mitochondrial membrane systems and could represent a suitable target for modulating cell death pathways.  相似文献   

2.
Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.  相似文献   

3.
Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific role of Akt and Hsp90β in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by Hsp90β overexpression but enhanced by decreasing Hsp90β expression. Hsp90β overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing Hsp90β expression had opposite effects. The protective effect of Hsp90β against apoptosis was negated by LY294002, an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by Hsp90β, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between Hsp90β and pAkt. These results demonstrate that Hsp90β may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylate BAD and reduce cytochrome C release. [BMB Reports 2013;46(1): 47-52]  相似文献   

4.
Lipid rafts and associated membrane proteins (flotillin, caveolin) play important roles in cell signaling and sperm fertilization while heat shock proteins (Hsp) ensure properly protein folding to fulfill their physiological functions. The markedly reduced fertility in thawed sperm after cryopreservation could result from disrupted membrane lipid rafts and these proteins. To explore the effect of sperm cryopreservation on lipid rafts and heat shock proteins, we compared lipid raft integrity, and the expression levels of lipid raft associated proteins (Flot-1, Flot-2, Cav-1) as well as heat shock proteins (Hsp90, Hsp70) in fresh and thawed sperm cryopreserved under different scenarios in yellow catfish. We found higher lipid raft integrity, higher protein expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 in fresh sperm samples than in thawed sperm samples, in thawed sperm samples cryopreserved with optimal cooling rate than those cryopreserved with sub-optimal cooling rate, and in thawed sperm samples cryopreserved with extenders supplemented with cholesterol than those supplemented with methyl-β-cyclodextrin (for cholesterol removal). Our findings indicate that lipid raft integrity, and expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 are clearly associated with sperm quality, and together they may play a cumulative role in reduced fertility associated with thawed sperm in aquatic species.  相似文献   

5.
Accumulating evidence suggests that some heat shock proteins (Hsps), in particular the 72-kDa inducible Hsp70, associate to the cell membrane and might be secreted through an unknown mechanism to exert important functions in the immune response and signal transduction. We speculated that specialized structures named lipid rafts, known as important platforms for the delivery of proteins to the cell membrane, might be involved in the unknown mechanism ensuring membrane association and secretion of Hsp70. Lipid rafts are sphingolipid-cholesterol-rich structures that have been mainly characterized in polarized epithelial cells and can be isolated as detergent-resistant microdomains (DRMs). Analysis of soluble and DRM fractions prepared from unstressed Caco-2 epithelial cells revealed that Hsp70, and to a lesser extent calnexin, were present in DRM fractions. Increased expression of Hsps, through heat shock or by using drugs acting on protein trafficking or intracellular calcium level, induced an efficient translocation to DRM. We also found that Hsp70 was released by epithelial Caco-2 cells, and this release dramatically increased after heat shock. Drugs known to block the classical secretory pathway were unable to reduce Hsp70 release. By contrast, release of the protein was affected by the raft-disrupting drug methyl-beta-cyclodextrin. Our data suggest that lipid rafts are part of a mechanism ensuring the correct functions of Hsps and provide a rational explanation for the observed membrane association and release of Hsp70.  相似文献   

6.
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion.  相似文献   

7.
During heat shock conditions, structural changes in cellular membranes may lead to cell death. Hsp90AA1 and other heat shock proteins involved in membranes are responsible for protecting membrane stabilization. However, the membrane binding mechanism of Hsp90AA1 remains largely uncharacterized. In this study, we showed Hsp90AA1 interacts with phospholipid membrane with high affinity. Using the depth-dependent fluorescence-quenching with brominated lipids, we found Hsp90AA1 penetrated 10.7?Å into the hydrocarbon core of the lipid bilayer. Circular dichroism spectra studies showed Hsp90AA1 lost part of its α-helical structures upon interaction with phospholipid membrane. By assessing binding properties of the three Hsp90AA1 domains, we found Hsp90AA1 interacted into the lipid bilayer mainly toward its C-terminus domain (CTD). Using scanning electron microscopy, we examined the protection on host cell membrane by overexpressing Hsp90AA1. The results indicated Hsp90AA1 or Hsp90AA1-CTD expressing E. coli cells exhibited better membrane integrity compared to the control after thermal treatment. The following liposome leakage assay suggested the protection of Hsp90AA1 might due to its stabilization of the membrane lipid. Collectively, the present study demonstrates Hsp90AA1 embeds into the lipid bilayer through its C-terminal domain and the Hsp90AA1-lipid association potentially has a significant function in keeping membranes stabilization during stress conditions.  相似文献   

8.
Hsp90 Interaction with INrf2(Keap1) Mediates Stress-induced Nrf2 Activation   总被引:1,自引:0,他引:1  
INrf2(Keap1) functions as an adapter for Cul3/Rbx1-mediated degradation of Nrf2. In response to stress, Nrf2 is released from INrf2 and translocates inside the nucleus leading to activation of cytoprotective proteins critical in protection against adverse effects including cancer. We demonstrate here a novel role of heat shock protein 90 (Hsp90) in control of the INrf2 and Nrf2 activation. Hsp90 interacted with INrf2 that leds to stabilization of INrf2 during heat shock stress. Domain mapping showed the requirement of INrf2-NTR and the Hsp90-CLD region for interaction of Hsp90 with INrf2. Heat shock and antioxidants induced Hsp90, and casein kinase 2 (CK2) phosphorylated INrf2Thr55. This led to increased Hsp90-INrf2 interaction, dissociation of the Rbx1/Cul3·INrf2·Nrf2 complex, and activation of Nrf2. Inhibitors of CK2 and Hsp90, and mutation of INrf2Thr55 abolished the Hsp90-INrf2 interaction and downstream signaling. INrf2 is released from Hsp90 once the heat shock or antioxidant stress subsidized, thereby allowing INrf2 to interact with Nrf2 and facilitate Nrf2 ubiquitination and degradation. The results together demonstrate a novel role for the stress-induced Hsp90-INrf2 interaction in regulation of Nrf2 activation and induction of cytoprotective proteins.  相似文献   

9.
According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.  相似文献   

10.
NF-κB and Akt are two main cell survival pathways that attenuate the anticancer efficacy of therapeutics. Our previous studies demonstrated that the Smac mimetic compound 3 (SMC3) specifically suppresses c-IAP1 and induces TNF-α autocrine to kill cancer cells. However, SMC3 also induces a cell survival signal through NF-κB activation. In this report, we further found that SMC3 potently activates Akt, which inhibits SMC3-induced cancer cell death. Strikingly, concurrent blocking NF-κB and Akt resulted in a significantly potentiated cytotoxicity. Because heat shock protein 90 (Hsp90) plays an important role in maintaining the integrity of both the NF-κB and Akt pathways in cancer cells, we examined if suppression of Hsp90 is able to potentiate SMC3-induced cancer cell death. The results show that targeting Hsp90 does not interfere with SMC3-induced c-IAP1 degradation and TNF-α autocrine, the key processes for SMC3-induced cancer cell apoptosis. However, Hsp90 inhibitors effectively blocked SMC3-induced NF-κB activation through degradation of RIP1 and IKKβ, two key components of the NF-κB activation pathway, and reduced both the constitutive and SMC3-induced Akt activity through degradation of the Akt protein. Consistently, with the co-treatment of SMC3 and Hsp90 inhibitors, apoptosis was markedly sensitized and a synergistic cytotoxicity was observed. The results suggest that concurrent targeting c-IAP1 and Hsp90 by combination of SMC3 and Hsp90 inhibitors is an effective approach for improving the anticancer value of SMC3.  相似文献   

11.
As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane.  相似文献   

12.
Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.  相似文献   

13.
Meares GP  Zmijewska AA  Jope RS 《FEBS letters》2004,574(1-3):181-186
Heat shock protein-90 (Hsp90) buffers cells from genetic mutations and environmental stresses. To test if this capability reflects a normal physiological function of Hsp90 to buffer cellular signals, the effects of Hsp90 inhibition were measured on activation of Akt. Inhibition of Hsp90 with geldanamycin amplified Akt phosphorylation induced by insulin-like growth factor-1 (IGF-1) or insulin, indicating that Hsp90 normally buffers these signals. Furthermore, with IGF-1 stimulation Hsp90 inhibition increased p38 activation, produced additive activation of p90RSK, and slightly increased the duration of ERK1/2 activation. Hsp90 dampened Akt signaling by facilitating phosphatase-mediated dephosphorylation of Akt. Thus, Hsp90 not only buffers the cellular effects of mutations and stresses, but also buffers the magnitude and duration of activation of proliferative and survival-promoting signaling responses.  相似文献   

14.
Phosphoinositide 3-kinase (PI3K) activation and synthesis of phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) lipids mediate growth factor signaling that leads to cell proliferation, migration, and survival. PI3K-dependent activation of Akt is critical for myoblast differentiation induced by serum withdrawal, suggesting that in these cells PI3K signaling is activated in an unconventional manner. Here we investigate the mechanisms by which PI3K signaling and Akt are regulated during myogenesis. We report that PI-3,4-P2 and PI-3,4,5-P3 accumulated in the plasma membranes of serum-starved 3T3-L6 myoblasts due to de novo synthesis and increased lipid stability. Surprisingly, only newly synthesized lipids were capable of activating Akt. Knockdown of the lipid phosphatase PTEN moderately increased PI3K lipids but significantly increased Akt phosphorylation and promoted myoblast differentiation. Knockdown of the lipid phosphatase Ship2, on the other hand, dramatically increased the steady-state levels of PI-3,4,5-P3 but did not affect Akt phosphorylation and increased apoptotic cell death. Together, these results reveal the existence of two distinct pools of PI3K lipids in differentiating 3T3-L6 myoblasts: a pool of nascent lipids that is mainly dephosphorylated by PTEN and is capable of activating Akt and promoting myoblast differentiation and a stable pool that is dephosphorylated by Ship2 and is unable to activate Akt.  相似文献   

15.
16.
The heterotrimeric G proteins, G(12) and G(13), are closely related in their sequences, signaling partners, and cellular effects such as oncogenic transformation and cytoskeletal reorganization. Yet G(12) and G(13) can act through different pathways, bind different proteins, and show opposing actions on some effectors. We investigated the compartmentalization of G(12) and G(13) at the membrane because other G proteins reside in lipid rafts, membrane microdomains enriched in cholesterol and sphingolipids. Lipid rafts were isolated after cold, nonionic detergent extraction of cells and gradient centrifugation. Galpha(12) was in the lipid raft fractions, whereas Galpha(13) was not associated with lipid rafts. Mutation of Cys-11 on Galpha(12), which prevents its palmitoylation, partially shifted Galpha(12) from the lipid rafts. Geldanamycin treatment, which specifically inhibits Hsp90, caused a partial loss of wild-type Galpha(12) and a complete loss of the Cys-11 mutant from the lipid rafts and the appearance of a higher molecular weight form of Galpha(12) in the soluble fractions. These results indicate that acylation and Hsp90 interactions localized Galpha(12) to lipid rafts. Hsp90 may act as both a scaffold and chaperone to maintain a functional Galpha(12) only in discrete membrane domains and thereby explain some of the nonoverlapping functions of G(12) and G(13) and control of these potent cell regulators.  相似文献   

17.
Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.  相似文献   

18.
The protein kinase B/Akt signalling pathway in human malignancy   总被引:34,自引:0,他引:34  
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.  相似文献   

19.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

20.
In HER-2-overexpressing breast cells, HER-2 receptors exist on the cell surface as monomers, homodimers and heterodimers. For signal activation and transduction to occur, HER-2 must be localized to lipid rafts. Therefore, we hypothesized that the amount of lipid rafts on the cell membrane would be a factor in HER-2 signaling. To test this, we used HB4a (an untransformed human mammary epithelial cell line) and HB4aC5.2 cells. HB4aC5.2 cells are HB4a derivatives that have been transfected with five copies of pJ5E.c-ErbB-2 and express approximately 900 times more HER-2 than HB4a cells. In these cells, HER-2 overexpression was accompanied by increased lipid rafts in cell membranes, a hyperactivation of downstream Akt and ERK1/2 proteins, and an increased rate of cell growth compared to HB4a. In addition, HER-2 overexpression was associated with an increased activation of FASN, a key enzyme involved in cellular lipogenesis. Its final product, palmitate, is frequently used to synthesize lipid rafts. We further hypothesized that treatment with docosahexaenoic acid (DHA), an omega-3 fatty acid, would disrupt the lipid rafts and lead to a growth arrest. In HB4aC5.2 cells, but not HB4a cells, we found that DHA treatment disrupted lipid raft; inhibited HER-2 signaling by decreasing activation of Akt, ERK1/2 and FASN proteins; and induced apoptosis. Although little is known about lipid rafts, our data support the idea that disturbances in these microdomains induced by DHA may represent a useful tool for controlling the signaling initiated by HER-2 receptors and its therapeutic potential in the treatment of HER-2 positive breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号