首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three dimensional particle tracking velocimetry (3-D PTV) was used to characterize the flow fields in the impeller region of three microcarrier reactor vessels. Three typical cell culture bioreactors were chosen: 250 ml small-scale spinner vessels, 3 L bench-scale reactor, and 20 L medium-scale reactor. Conditions studied correspond to the actual operating conditions in industrial setting and were determined based on the current scale-up paradigm: the Kolmogorov eddy length criterion. In this paper we present characterization of hydrodynamics on the basis of flow structures produced because of agitation. Flow structures were determined from 3-D mean velocity results obtained using 3-D PTV. Although the impellers used in 3 L and 20 L reactors were almost identical, the flow structures produced in the two reactors differed considerably. Results indicate that near geometric scale up does not necessarily amount to scale-up of flow patterns and indicates that intensity as well as distribution of energy may vary considerably during such a scale-up.  相似文献   

2.
Microcarrier cell culture process can be used to culture anchorange-dependent cells in large bioreactor vessels. The process performance in large bioreactors is usually less prominent than that in spinner flask vessels and bench scale reactors. In this study we investigated the microcarrier cell culture processes in 100?ml spinner flask and 15-liter bioreactor cultures, including the kinetics for cell attachment, cell growth and the production of Japanese encephaltilis vaccine strain (Beijing-1) virus. Under a fixed concentration of microcarrier and cell density used in inoculations, the attachment kinetics of Vero cells on Cytodex 1 microcarrier in a 15-liter bioreactor vessel was 2 folds slower than with 100?ml spinner flask culture. Virus replication in 15-liter bioreactor culture also revealed an approximately one day lag-time compared to 100?ml spinner flask culture. Findings presented herein provide valuable information for designing and operating microcarrier cell culture processes in large bioreactor vessels.  相似文献   

3.
Previous studies of oxidation-reduction potential (ORP) variation in monolayer (Roux bottle) cultures pointed out the need for data on pH and ORP patterns in simple spinner cultures. This information was desirable for optimizing conditions of growth in small 1-L and New Brunswick fermentors. Results of experiments in 250-ml centrifuge spinner vessels are presented showing that incubation of media prior to inoculation induces desirable qualities reflected in better growth. The importance of initial ORP values of the medium is discussed. The relationship of ORP levels to yield and longevity of cell growth is also considered. The ORP level of the medium at inoculation is shown to be effected by previous incubation.  相似文献   

4.
The morphology of filamentous organisms in submerged cultures varies between the pelleted and the dispersed forms depending on the strain of organism and the culture conditions. The dispersed form consists of branched and unbranched hyphae (freely dispersed form) and clumps (filamentous material in aggregates). In agitated systems, the choice of impeller geometry as well as the total power input determines the mechanical forces that might affect the morphology of filamentous species (e.g. by fragmentation) with simultaneous effects on their growth and productivity. To find out more about fragmentation of Penicillium chrysogenum caused by mechanical forces of different impeller types and agitation intensities, a population balance model has been developed. The projected area measured by image analysis was used to characterise the morphology (size) of the mycelia. In the model, the kinetics of mycelial fragmentation were expressed by a breakage rate constant K, which was assumed to be only dependent on the agitation conditions. The fragmentation rate was considered to follow a first order process in size (area) which was based on assumptions made for the mechanism of mycelial break-up, and work reported in the literature. Previously published mean and distributional data from off-line fragmentation experiments in ungassed vessels of sizes from 1.4 to 180?l were used to validate the model. For the first time a model has been found that is capable of fitting changes in mycelial morphology caused by mechanical forces generated by different impellers at various power inputs and scales. Besides the mean projected areas of the mycelia, the model allowed simulations of the projected area distributions, and changes in those distributions because of the agitation. At the small scale (1.4?l), the breakage rate constant K could be correlated well with either impeller tip speed or the “energy dissipation/circulation function”, which is based on mycelial circulation through the impeller region. The simpler but commonly used power input per unit tank volume did not correlate K adequately. The scale up data showed that only the “energy dissipation/circulation function” correlated mycelial fragmentation well. The dependence of K on biomass concentration, and its detailed dependence (if any) on the fermentation conditions at sampling, which might indicate likely breakage mechanisms, remain to be elucidated.  相似文献   

5.
目的:哺乳动物细胞目前已广泛用于生物工程药物如单抗和疫苗的生产.而用于贴壁细胞规模化培养的微载体,也应时应需得以开发并应用于生物制药.贴壁细胞微载体培养在搅拌罐和WAVETM反应器中都能进行.而如要进行进一步的放大培养,球转球工艺不可或缺.为了发展球转球这一新的放大技术,以及考量WAVETM反应器这种新型大规模培养设备的应用性,大量的细胞培养和球转球实验在WAVETM反应器和搅拌瓶中进行.收集到的数据得以分析比较.方法:将Vero细胞分别接入WAVETM反应器和搅拌瓶中用微载体Cytodex 1进行培养.适当补充营养并控制温度、pH等培养条件使细胞增殖.长满微载体的细胞用清洗、消化等球转球工艺的一系列步骤而分离,并放大接种到新的培养体系.球转球工艺的有效性通过记录并统计分析细胞消化分离的回收率,以及细胞重新接种生长的存活力来评估.结果:统计学分析比较WAVETM反应器和搅拌瓶中得到的细胞分离回收率分别是67.56%和39.39%,数理统计P值小于0.0003;细胞重新接种存活率分别是95.17%和78.45%,P值等于0.0107.结论:在WAVETM反应器中进行的球转球放大工艺,其总体表现和有效性远高于在搅拌瓶中得到的结果.在WAVETM反应器中培养的Vero细胞有很好的细胞状态,作为种子链和生产用罐相比搅拌型反应罐均有很大的优越性.  相似文献   

6.
The continuous growth of Spodoptera frugiperda Sf-9 cells in a 250-ml blown-glass jacketed spinner flask under a direct air sparging environment was investigated. Even at 220 ml working volume (about 90% of total volume), this spinner flask provided good mixing and oxygenation as demonstrated by a higher cell density compared with fermentor cultures. This eliminates a common limitation of the traditional spinner flask, namely much lower cell density at high working volume. Furthermore, this spinner flask has been run with Sf-9 cell culture at five different dilution rates and two different air sparging rates at steady state, demonstrating its utility in research applications where cell size, metabolic activity and environmental conditions can be constantly maintained. In addition to demonstrating the utility of the reactor, three novel points are made in this report. First, cell density in continuous cultures is increased significantly due to a high agitation rate and, especially, air sparging rate, which is seldom used in animal cell or insect cell culture. Second, there is no apparent difference in the specific death rate at two different sparging rates (0.0093 vvm and 0.0125 vvm). Finally, we have maintained Sf-9 cells for more than 4 months in a continuous culture using a serum-free medium without loss of recombinant protein expression in infected cells.  相似文献   

7.
Freshly harvested primary rat hepatocytes cultivated as multicellular aggregates, or spheroids, have been observed to exhibit enhanced liver-specific function and differentiated morphology compared to cells cultured as monolayers. An efficient method of forming spheroids in spinner vessels is described. Within 24 h after inoculation, greater than 80% of inoculated cells formed spheroids. This efficiency was significantly greater than that reported previously for formation in stationary petri dishes. With a high specific oxygen uptake rate of 2.0 x 10(-9) mmol O(2)/cell/h, the oxygen supply is critical and should be monitored for successful formation. Throughout a 6-day culture period, spheroids assembled in spinner cultures maintained a high viability and produced albumin and urea at constant rates. Transmission electron microscopy indicated extensive cell-cell contacts and tight junctions between cells within spheroids. Microvilli-lined bile canaliculus-like channels were observed in the interior of spheroids and appeared to access the exterior through pores at the outer surface. Spheroids from spinner cultures exhibited at least the level of liver-specific activity as well as similar morphology and ultrastructure compared to spheroids formed in stationary petri dishes. Hepatocytes cultured as spheroids are potentially useful three-dimensional cell systems for application in a bioartificial liver device and for studying xenobiotic drug metabolism. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
The bioprocess development cycle is a complex task that requires a complete understanding of the engineering of the process (e.g., mass transfer, mixing, CO(2) removal, process monitoring, and control) and its affect on cell biology and product quality. Despite their widespread use in bioprocess development, spinner flasks generally lack engineering characterization of critical physical parameters such as k(L)a, P/V, or mixing time. In this study, mass transfer characterization of a 250-mL spinner flask using optical patch-based sensors is presented. The results quantitatively show the effect of the impeller type, liquid filling volume, and agitation speed on the volumetric mass transfer coefficient (k(L)a) in a 250-mL spinner flask, and how they can be manipulated to match mass transfer capability at large culture devices. Thus, process understanding in spinner flasks can be improved, and these devices can be seamlessly integrated in a rational scale-up strategy from cell thawing to bench-scale bioreactors (and beyond) in biomanufacturing.  相似文献   

9.
翼形轴流桨在红霉素发酵中的应用研究   总被引:1,自引:0,他引:1  
在20t工业发酵罐中,研究了翼形轴流桨搅拌对红霉素发酵过程的影响。重点考察了粘度,溶氧,效价等过程参数变化,以及搅拌功耗与发酵产量之间的关系。研究结果表明:(1)与传统的涡轮搅拌桨相比,翼形轴流桨搅拌其发酵过程参数(粘度,溶氧,效价等)随时间的变化曲线有明显的差异;(2)在相同的生产条件下,用翼形轴流桨代表涡轮桨可有效提高生产效率。  相似文献   

10.
Three-dimensional particle tracking velocimetry (3-D PTV), a modern, quantitative, visualization tool, has been applied to the characterization of the flow field in the impeller region of cell culture reactor vessels. The experimental system used here is a 250-mL microcarrier spinner vessel. The studies were conducted at three different agitation rates, 90, 150, and 210 rpm, corresponding to healthy, mildly damaging, and severely damaging shear intensities, respectively. The flow can be classified into three regions: a predominantly tangential (azimuthal) flow generated by the impeller; a trailing vortex region coming off the impeller tip; and a converging flow region close to the center of the vessel. The latter two are the regions of highest velocity gradients. Energy dissipation rates due to mean velocity gradients were also calculated to characterize the impeller stream. Local specific energy dissipation rates > 10,000 erg/(cm(3)sec) . have been measured. It is proposed that the critical regions for microcarrier culture damage due to impeller hydrodynamics are the trailing vortex region and the high energy converging flow region. Graphical representation of the mean velocity flow fields and the distribution of energy dissipation rates in the impeller region are also presented here. The merits of using the dissipation function (measure of specific energy dissipation rate) as a possible scale-up parameter are also discussed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
The ability to culture hematopoietic cells in readily characterizable and scalable stirred systems, combined with the capability to utilize serum-free medium, will aid the development of clinically attractive bioreactor systems for transplantation therapies. We thus examined the proliferation and differentiation characteristics of peripheral blood (PB) mononuclear cells (MNC), cord blood (CB) MNC, and PB CD34(+) cells in spinner flasks and (control) T-flask cultures in both serum-containing and serum-free media. Hematopoietic cultures initiated from all sources examined (PB MNC, CB MNC, and PB CD34(+) cells) grew well in spinner vessels with either serum-containing or serum-free medium. Culture proliferation in spinner flasks was dependent on both agitator design and RPM as well as on the establishment of critical inoculum densities (ID) in both serum-containing (2 x 10(5) MNC/mL) and serum-free (3 x 10(5) MNC/mL) media. Spinner flask culture of PB MNC in serum-containing medium provided superior expansion of total cells and colony-forming cells (CFC) at high ID (1.2 x 10(6) cells/mL) as compared to T-flask controls. Serum-free spinner culture was comparable, if not superior, to that observed in serum-containing medium. This is the first report of stirred culture of PB or CB MNC, as well as the first report of stirred CD34(+) cell culture. Additionally, this is the first account of serum-free stirred culture of hematopoietic cells from any source.  相似文献   

12.
Hydrodynamic effects on BHK cells grown as suspended natural aggregates   总被引:1,自引:0,他引:1  
Baby hamster kidney (BHK) cell aggregates grown in stirred vessels with different working volumes and impeller sizes were characterized. Using batch cultures, the range of agitation rates studied (25-100 rpm) led to aggregates with maximum sizes of 150 mum. Necrotic centers were not observed and cell specific productivity was independent of aggregate size. High cell viability was found for both single and adherent cells without an increase in cell death when agitation rate was increased. The increase in agitation rate affected aggregates by reducing their size and increasing their concentration and cell concentration in aggregates, while increasing the fraction of free cells in suspension. The experimental relationship between aggregate size and power dissipation rate per unit of mass was close to -1/4, suggesting a correlation with a critical turbulence microscale; this was independent of vessel scale and impeller geometry over the range investigated. Viscous stresses in the viscous dissipation subrange (below Kolmogoroff eddies) appear to be responsible for aggregate breakage. Under intense agitation BHK cells grown in the absence of microcarriers existed as aggregates without cell damage, whereas cells grown on the surface of microcarriers were largely reduced. This is a clear advantage for scaleup purposes if aggregates are used as a natural immobilization system in stirred vessels. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
An 11-L helical ribbon impeller (HRI) bioreactor was tested for the culture of Spodoptera frugiperda (Sf-9) cells. This impeller and surface baffling ensured homogeneous mixing and high oxygen transfer through surface aeration and surface-induced babble generation. Serum-supplemented and serum-free cultures, using TNMFH and IPL/41 media, respectively, grew a similar specific growth rates(0.031 and 0.028 h(-1)) to maximum cell densities of 5.5 x 10(6)-6.0 x 10(6) cells. mL(-1) with viability exceeding 98% during exponential growth phase. Growth limitation coincided with glucose and glutamine depletion and production of significant amounts of alanine. The bioreactor was further tested under more stringent conditions by infecting a serum-free medium culture with a recombinant baculovirus. Heterologous protein production of approximately 35 mug per 10(6) cells was comparable to yields obtained in serum-free cultures grown in spinner flasks and petri dishes. Average specific oxygen up-take and carbon dioxide production rates of the serum-free culture prior to infection as measured by on-line mass spectroscopy were 0.20 mumol O(2)mu.(10(6) cells)(-1) h(-1) and 0.22 mumol CO(2) . (10(6) cells)(-1)h(-1) and increased by 30-40% during infection. Therefore, the mixing and oxygenation conditions of this bioreactor were suitable for insect cell culture and recombinant protein production, with limitation being mainly attributed to nutrient depletion and toxic by-product generation.  相似文献   

14.
Disposable orbitally shaken TubeSpin bioreactor 600 tubes (TS600s) were recently developed for the bench-scale cultivation of animal cells in suspension. Here we compared batch cultures of Sf9 insect cells in TS600s, spinner flasks, and shake flasks. Superior cell growth was observed in TS600s and shake flasks as compared with spinner flasks, and more favorable oxygen-enriched cell culture conditions were observed in TS600s as compared with either spinner or shake flasks. The results demonstrated the suitability of TS600s as a disposable vessel for the cultivation of Sf9 cells in suspension.  相似文献   

15.
The effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, NJS, for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8–10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier. An increase in microcarrier concentration or seeding density generally had a deleterious or neutral effect, as previously observed for human fibroblast cultures. The choice of impeller was significant, as was incorporation of a 1 day delay before agitation to allow initial attachment of cells. The best conditions for cell expansion on the microcarriers in the flasks were 3,000 microcarriers ml−1 (ca. 1 g dry weight l−1), a seeding density of 5 cells per microcarrier with a 1 day delay before agitation began at NJS (30 rpm), using a horizontally suspended flea impeller with an added vertical paddle. These findings were interpreted using Kolmogorov’s theory of isotropic turbulence.  相似文献   

16.
Perfluorocarbon (PFC) was used as an oxygen carrier in the cultures of insect cells and virus-infected insect cells. The cell suspensions were placed on a planar layer of PFC, which was re-oxygenated in an outer aeration unit and continuously recirculated, and were agitated by two sets of impeller blades, lower one of which was set in such a way that the ridge of the blade touched the PFC layer. The maximum cell density attained in the PFC-mediated aeration culture was higher than that in surface aeration culture. On viral infection, a recombinant protein yield was significantly high in the PFC-mediated aeration culture as compared with that in the surface aeration culture, though the production was largely decreased by setting apart the lower set of the blade from the PFC-medium interface. These results showed that the PFC-mediated aeration would be a useful technique for insect cell/baculovirus expression system. Overall mass-transfer coefficient K(L) for oxygen was examined in both the PFC-mediated aeration and surface aeration systems, by using a flask whose dimensions were identical to those of spinner flasks used for the cultures. The K(L) value in the PFC-mediated system was 2.60x10(-3)cms(-1), 1.6 times higher than that in the surface aeration system, when impeller blades were positioned at PFC-medium and medium-air interfaces, respectively. However, the K(L) values in both the PFC-mediated and surface aeration systems were decreased and their differences were brought so close, as the blade was set apart from the interfaces. DO behavior in the cultures was well explained by the model calculation using the determined K(L) values and oxygen-consumption rates of viable cells. This calculation further suggested that crucial DO, under which recombinant protein productions were unsuccessful, was 0.24-0.5ppm (3-7%) in the insect cell/baculovirus expression system.  相似文献   

17.
The purpose of this study was to begin investigating the nature of liposome interactions with colon tumor cells. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing [3H]actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with [3H]phosphatidylcholine or [14C]cholesterol) and of actinomycin D (trace labeled with 3H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effective than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.  相似文献   

18.
Suspensions derived from attached HeLa cells transported 45Ca2+ considerably faster than those derived from spinner cultures grown in liquid medium. Incubation of spinner cells with fibronectin or cold-insoluble globulin in the presence of 5% calf serum at 37 degrees C for 1 to 2 h greatly increased the rate of Ca2+ flux into the cells. Suspensions of cells transformed by Rous sarcoma virus transported Ca2+ much more slowly than cell suspensions of the parent strain of normal rat kidney. Incubation of the transformed cells or Ehrlich ascites tumor cells with fibronectin increased the rate of Ca2+ uptake, while no effect was seen on Ca2+ transport by this treatment of normal kidney cells grown in tissue cultures. A 45,500-dalton protein was found to interact firmly with Ca2+ that entered into attached HeLa cells or fibronectin-treated spinner cells. This Ca2+-associated protein was detected by lithium dodecyl sulfate gel electrophoresis at 0 degrees C after 30 s of exposure to radioactive Ca2+. In tumor cells without fibronectin treatment, the radioactive band was not seen under the same conditions, even after 10 min incubation with 45Ca2+. In fibronectin-treated tumor cells, addition of Ca2+ to buffered solutions resulted in increased phosphorylation of a protein in the 45,000-dalton region. The phosphorylated protein band which appears to be associated with the cytoskeleton can be resolved by isoelectric focusing into four polypeptide chains. The relation of these observations to the cascade of protein kinases involved in the phosphorylation of the beta-subunit of the (Na+-K+)-ATPase is discussed.  相似文献   

19.
Measurements of the transepithelial electrical resistance correlated with freeze-fracture observations have been used to study the process of tight junction formation under various experimental conditions in monolayers of the canine kidney epithelial cell line MDCK. Cells derived from previously confluent cultures and plated immediately after trypsin- EDTA dissociation develop a resistance that reaches its maximum value of several hundred ohms-cm(2) after approximately 24 h and falls to a steady-state value of 80-150 ohms- cm(2) by 48 h. The rise in resistance and the development of tight junctions can be completely and reversibly prevented by the addition of 10 μg/ml cycloheximide at the time of plating, but not when this inhibitor is added more than 10 h after planting. Thus tight junction formation consists of separable synthetic and assembly phases. These two phases can also be dissociated and the requirement for protein synthesis after plating eliminated if, following trypsinization, the cells are maintained in spinner culture for 24 h before plating. The requirement for protein synthesis is restored, however, if cells maintained in spinner culture are treated with trypsin before plating. Actinomycin D prevents development of resistance only in monolayers formed from cells derived from sparse rather than confluent cultures, but new mRNA synthesis is not required if cells obtained from sparse cultures are maintained for 24 h in spinner culture before plating. Once a steady-state resistance has been reached, its maintenance does not require either mRNA or protein synthesis; in fact, inhibition of protein synthesis causes a rise in the resistance over a 30-h period. Following treatments that disrupt the junctions in steady- state monolayers recovery of resistance also does not require protein synthesis. These observations suggest that proteins are involved in tight junction formation. Such proteins, which do not turn over rapidly under steady-state conditions, are destroyed by trypsinization and can be resynthesized in the absence of stable cell-cell or cell-substratum contact. Messenger RNA coding for proteins involved in tight junction formation is stable except when cells are sparsely plated, and can also be synthesized without intercellular contacts or cell-substratum attachment.  相似文献   

20.
A new bubble aeration system was designed to minimize cell killing and cellular damage due to sparging. The residence time of the bubbles in the developed bubble bed reactor was prolonged dramatically by floating them in a countercurrent produced by an impeller. The performance of the new reactor bubble aeration system, implemented in a laboratory reactor, was tested in dynamic aeration experiments with an without cells. An efficiency up to 95% in oxygen transfer could be achieved, which enables a much lower gas flow rate compared with conventional bubble aeration reactors. The low gas flow rate is important to keep cell damage by bubbles as low as possible. A laser light sheet technique used to find the optimal flow pattern in the reactor. The specific power dissipation of the impeller is a good measure to predict cell damage in a turbulent flow. Typical values for the power dissipation measured in the bubble bed reactor were in the range of 0.002 to 0.013 W/kg, which is far below the critical limit for animal cells. The growth of a hybridoma cell line was studied in cell cultivation experiments. A protein-free medium without supplements such as serum or Pluronic F68 was used to exclude any effect of cell-protecting factors, No difference in the specific growth rate and the yield of the antibodies was observed in cell grown in the bubble free surface aeration in the spinner flask. In contrast to the spinner flask, however, the bubble bed reactor design could be scaled up. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号