首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 728 毫秒
1.
2.
3.
4.
5.
6.
7.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover.  相似文献   

10.
The Wilms' tumor protein Wt1 plays an essential role in mammalian urogenital development. WT1 mutations in humans lead to a variety of disorders, including Wilms' tumor, a pediatric kidney cancer, as well as Frasier and Denys-Drash syndromes. Phenotypic anomalies in Denys-Drash syndrome include pseudohermaphroditism and sex reversal in extreme cases. We have used cDNA microarray analyses on Wt1 knockout mice to identify Wt1-dependent genes involved in sexual development. The gene most dramatically affected by Wt1 inactivation was Amhr2, encoding the anti-Müllerian hormone (Amh) receptor 2. Amhr2 is an essential factor for the regression of the Müllerian duct in males, and mutations in AMHR2 lead to the persistent Müllerian duct syndrome, a rare form of male pseudohermaphroditism. Here we show that Wt1 and Amhr2 are coexpressed during urogenital development and that the Wt1 protein binds to the promoter region of the Amhr2 gene. Inactivation and overexpression of Wt1 in cell lines was followed by immediate changes of Amhr2 expression. The identification of Amhr2 as a Wt1 target provides new insights into the role of Wt1 in sexual differentiation and indicates, in addition to its function in early gonad development and sex determination, a novel function for Wt1, namely, in Müllerian duct regression.  相似文献   

11.
12.
13.
14.
15.
16.
Steroidogenic cells of the adrenal and gonad are thought to be derived from a common primordium that divides into separate tissues during embryogenesis. In this paper, we show that cells with mixed adrenal and Leydig cell properties are found dispersed in the insterstitium of the embryonic and adult mouse testis. They express the adrenal markers Cyp11b1 and Cyp21 and respond to ACTH. Consistent with these properties, we show that the embryonic testis produces the adrenal steroid corticosterone. These cells also express Cyp17 and respond to hCG stimulation but do not express the Leydig specific marker Insl3 showing that they are a population of steroidogenic cells distinct from Leydig cells. Based on their properties, we refer to these cells as adrenal-like cells of the testis and propose that they are the mouse equivalent of the precursors of human adrenal rests, tumors found primarily in male patients with congenital adrenal hyperplasia. Organ culture studies show that ACTH-responsive cells are present at the gonad/mesonephros border and seem to migrate into the XY but not the XX gonad during development. Consistent with this, using transgenic Cyp11a1 reporter mice, we definitively show that steroidogenic cells can migrate from the mesonephros into the XY gonad. We also show that the region between the mesonephros and the gonad harbors steroidogenic cell precursors that are repressed by the presence of the mesonephros. We propose that this region is the source of the adrenal-like cells that migrate into the testis as it develops and are activated when Leydig cells differentiate. These studies reveal the complex nature of steroidogenic cell differentiation during urogenital development.  相似文献   

17.
18.
19.
20.
The gonad as well as the reproductive tracts, kidney, and adrenal cortex are derived from the intermediate mesoderm. In addition, the intermediate mesoderm forms the mesonephros. Although the mesonephros is the source of certain testicular cell types, its contribution to gonad formation through expression of growth factors is largely unknown. Here, we examined the expression profiles of FGF9 in the developing mesonephros of chick embryos at sexually indifferent stages, and found that the expression domain is adjacent to the gonadal primordium. Moreover, FGFR3 (FGF receptor 3) showed a strong expression in the gonadal primordium. Next, we examined the functions of FGF signal during gonadal development with misexpressed FGF9. Interestingly, misexpression of FGF9 led to gonadal expansion through stimulation of cell proliferation. In contrast, treatment with a chemical inhibitor for FGFR decreased cell proliferation and resulted in reduction of the gonadal size. Simultaneously, the treatment resulted in reduction of gonadal marker gene expression. Our study demonstrated that FGF expressed in the developing mesonephros is involved in the development of the gonad at the sexually indifferent stages through stimulation of gonadal cell proliferation and gonadal marker gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号