首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
There is growing evidence that activated synovial fibroblasts, as part of a complex cellular network, play an important role in the pathogenesis of rheumatoid arthritis. In recent years, significant progress has been made in elucidating the specific features of these fibroblasts. It has been understood that although macrophage and lymphocyte secreted factors contribute to their activation, rheumatoid arthritis synovial fibroblasts (RA-SFs) do not merely respond to stimulation by pro-inflammatory cytokines, but show a complex pattern of molecular changes also maintained in the absence of external stimulation. This pattern of activation is characterized by alterations in the expression of regulatory genes and signaling cascades, as well as changes in pathways leading to apoptosis. These together result in the upregulation of adhesion molecules that mediate the attachment of RA-SFs to the extracellular matrix and in the overexpression of matrix degrading enzymes that mediate the progressive destruction of the joints. In addition, activated RA-SFs exert specific effects on other cell types such as macrophages and lymphocytes. While the initiating step in the activation of RA-SFs remains elusive, several key pathways of RA-SF activation have been identified. However, there is so far no single, specific marker for this phenotype of RA-SF. It appears that activated RA-SFs are characterized by a set of specific properties which together lead to their aggressive behavior.  相似文献   

2.
3.
The aim of this study was to explore the molecular profile of proliferating rheumatoid arthritis synovial fibroblasts (RA-SF). Total RNA was extracted from two cultures of RA-SF (low-density [LD] proliferating cells and high-density [HD] nonproliferating cells) and suppression subtractive hybridization was performed to compare differential gene expression of these two cultures. Subtracted cDNA was subcloned, and nucleotide sequences were analyzed to identify each clone. Differential expression of distinct clones was confirmed by semiquantitative RT-PCR. The expression of certain genes in synovial tissues was examined by in situ hybridization. In both LD and HD cells, 44 clones were upregulated. Of the 88 total clones, 46 were identical to sequences that have previously been characterized. Twenty-nine clones were identical to cDNAs that have been identified, but with unknown functions so far, and 13 clones did not show any significant homology to sequences in GenBank (NCBI). Differential expression of distinct clones was confirmed by RT-PCR. In situ hybridization showed that certain genes, such as S100A4, NFAT5, unr and Fbx3, were also expressed predominantly in synovial tissues from patients with RA but not from normal individuals. The expression of distinct genes in proliferating RA-SF could also be found in RA synovium, suggesting that these molecules are involved in synovial activation in RA. Most importantly, the data indicate that the expression of certain genes in RA-SF depends on the stage of proliferation; therefore, the stage needs to be considered in any analysis of differential gene expression in SF.  相似文献   

4.
To analyze the role of Toll-like receptors (TLR) in the pathogenesis of rheumatoid arthritis, we have assessed the effects of stimulation of cultured synovial fibroblasts by the TLR-2 ligand bacterial peptidoglycan. By using high density oligonucleotide microarray analysis we identified 74 genes that were up-regulated >2.5-fold. Fourteen CC and CXC chemokine genes were among the genes with the highest up-regulation. Quantitative real-time PCR analysis confirmed up-regulation of granulocyte chemotactic protein (GCP)-2, RANTES, monocyte chemoattractant protein (MCP)-2, IL-8, growth-related oncogene-2, and to a lesser extent, macrophage-inflammatory protein 1alpha, MCP-1, EXODUS, and CXCL-16. GCP-2, RANTES, and MCP-2 were detected in culture supernatants of synovial fibroblasts stimulated with peptidoglycan. Chemokine secretion induced by stimulation of rheumatoid arthritis synovial fibroblasts via TLR-2 was functionally relevant as demonstrated by chemotaxis assays. GCP-2 and MCP-2 expression, which have not been reported previously in rheumatoid arthritis, was demonstrated in synovial tissue sections of patients diagnosed with rheumatoid arthritis but not in those with osteoarthritis. Correspondingly, synovial fluid levels were significantly higher in patients diagnosed with rheumatoid arthritis as compared with osteoarthritis. Thus, we present evidence for an induction of chemokine secretion by activation of synovial fibroblasts via TLR-2, possibly contributing to the formation of inflammatory infiltrates characteristically found in rheumatoid arthritis joints.  相似文献   

5.
Synovial fibroblasts (SFs) have become a major target for ex vivo gene transfer in rheumatoid arthritis (RA), but efficient transduction of RA-SFs still is a major problem. The low proliferation rate and heterogeneity of RA-SFs, together with their lack of highly specific surface receptors, have hampered a more extensive application of this technique. Improving transduction protocols with conventional viral vectors, therefore, as well as developing novel strategies, such as alternative target cells, and novel delivery systems constitute a major challenge. Recent progress in this field will lead to the achievement of high transgene expression, and will facilitate the use of gene transfer in human trials.  相似文献   

6.
Synovial fibroblasts (SFs) have become a major target for ex vivo gene transfer in rheumatoid arthritis (RA), but efficient transduction of RA-SFs still is a major problem. The low proliferation rate and heterogeneity of RA-SFs, together with their lack of highly specific surface receptors, have hampered a more extensive application of this technique. Improving transduction protocols with conventional viral vectors, therefore, as well as developing novel strategies, such as alternative target cells, and novel delivery systems constitute a major challenge. Recent progress in this field will lead to the achievement of high transgene expression, and will facilitate the use of gene transfer in human trials.  相似文献   

7.
Integrins play an important role in cell adhesion to the extracellular matrix and other cells. Upon ligand binding, signaling is initiated and several intracellular pathways are activated. This leads to a wide variety of effects, depending on cell type. Integrin activation has been linked to proliferation, secretion of matrix-degrading enzymes, cytokine production, migration, and invasion. Dysregulated integrin expression is often found in malignant disease. Tumors use integrins to evade apoptosis or metastasize, indicating that integrin signaling has to be tightly controlled. During the course of rheumatoid arthritis, the synovial tissue is infiltrated by immune cells that secrete large amounts of cytokines. This pro-inflammatory milieu leads to an upregulation of integrin receptors and their ligands in the synovial tissue. As a consequence, integrin signaling is enhanced, leading to enhanced production of matrix-degrading enzymes and cytokines. Furthermore, in analogy to invading tumors, synovial fibroblasts start invading and degrading cartilage, thereby generating extracellular matrix debris that can further activate integrins.  相似文献   

8.
For some time synovial fibroblasts have been regarded simply as innocent synovial cells, mainly responsible for synovial homeostasis. During the past decade, however, a body of evidence has accumulated illustrating that rheumatoid arthritis synovial fibroblasts (RASFs) are active drivers of joint destruction in rheumatoid arthritis. Details regarding the intracellular signalling cascades that result in long-term activation and synthesis of proinflammatory molecules and matrix-degrading enzymes by RASFs have been analyzed. Molecular, cellular and animal studies have identified various interactions with other synovial and inflammatory cells. This expanded knowledge of the distinct role played by RASFs in the pathophysiology of rheumatoid arthritis has moved these fascinating cells to the fore, and work to identify targeted therapies to inhibit their joint destructive potential is underway.  相似文献   

9.
Hyaluronan (HA) degradation produces small oligosaccharides that are able to increase pro-inflammatory cytokines in rheumatoid arthritis synovial fibroblasts (RASF) by activating both CD44 and the toll-like receptor 4 (TLR-4). CD44 and TLR-4 stimulation in turn activate the NF-kB that induces the production of pro-inflammatory cytokines. Degradation of HA occurs via two mechanisms: one exerted by reactive oxygen species (ROS) and one controlled by different enzymes in particular hyaluronidases (HYALs). We aimed to investigate the effects of inhibiting HA degradation (which prevents the formation of small HA fragments) on synovial fibroblasts obtained from normal DBA/J1 mice (NSF) and on synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA), both fibroblast types stimulated with tumor necrosis factor alpha (TNF-α). TNF-α stimulation produced high mRNA expression and the related protein production of CD44 and TLR-4 in both NSF and RASF, and activation of NF-kB was also found in all fibroblasts. TNF-α also up-regulated the inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and other pro-inflammatory mediators, such as matrix metalloprotease-13 (MMP-13), inducible nitric oxide synthase (iNOS), as well as HA levels and small HA fragment production. Treatment of RASF with antioxidants and specific HYAL1, HYAL2, and HYAL3 small interference RNA (siRNAs) significantly reduced TLR-4 and CD44 increase in the mRNA expression and the related protein synthesis, as well as the release of inflammatory mediators up-regulated by TNF-α. These data suggest that the inhibition of HA degradation during arthritis may contribute to reducing TLR-4 and CD44 activation and the inflammatory mediators response.  相似文献   

10.

Introduction

Synovial fibroblasts invade cartilage and bone, leading to joint destruction in rheumatoid arthritis. However, the mechanisms that regulate synovial fibroblast invasion are not well understood. Focal adhesion kinase (FAK) has been implicated in cellular invasion in several cell types, and FAK inhibitors are in clinical trials for cancer treatment. Little is known about the role of FAK in inflammatory arthritis, but, given its expression in synovial tissue, its known role in invasion in other cells and the potential clinical availability of FAK inhibitors, it is important to determine if FAK contributes to synovial fibroblast invasion and inflammatory arthritis.

Methods

After treatment with FAK inhibitors, invasiveness of human rheumatoid synovial fibroblasts was determined with Matrigel invasion chambers. Migration and focal matrix degradation, two components of cellular invasion, were assessed in FAK-inhibited rheumatoid synovial fibroblasts by transwell assay and microscopic examination of fluorescent gelatin degradation, respectively. Using mice with tumor necrosis factor α (TNFα)–induced arthritis in which fak could be inducibly deleted, invasion and migration by FAK-deficient murine arthritic synovial fibroblasts were determined as described above and arthritis was clinically and pathologically scored in FAK-deficient mice.

Results

Inhibition of FAK in human rheumatoid synovial fibroblasts impaired cellular invasion and migration. Focal matrix degradation occurred both centrally and at focal adhesions, the latter being a novel site for matrix degradation in synovial fibroblasts, but degradation was unaltered with FAK inhibitors. Loss of FAK reduced invasion in murine arthritic synovial fibroblasts, but not migration or TNFα-induced arthritis severity and joint erosions.

Conclusions

FAK inhibitors reduce synovial fibroblast invasion and migration, but synovial fibroblast migration and TNFα-induced arthritis do not rely on FAK itself. Thus, inhibition of FAK alone is unlikely to be sufficient to treat inflammatory arthritis, but current drugs that inhibit FAK may inhibit multiple factors, which could increase their efficacy in rheumatoid arthritis.  相似文献   

11.
Apart from counteracting matrix metalloproteinases, tissue inhibitor of metalloproteinases-3 (TIMP-3) has proapoptotic properties. These features have been attributed to the inhibition of metalloproteinases involved in the shedding of cell surface receptors such as the TNFR. However, little is known about effects of TIMP-3 in cells that are not susceptible to apoptosis by TNF-alpha. In this study, we report that gene transfer of TIMP-3 into human rheumatoid arthritis synovial fibroblasts and MRC-5 human fetal lung fibroblasts facilitates apoptosis and completely reverses the apoptosis-inhibiting effects of TNF-alpha. Although TNF-alpha inhibits Fas/CD95-induced apoptosis in untransfected and mock-transfected cells, fibroblasts ectopically expressing TIMP-3 are sensitized most strongly to Fas/CD95-mediated cell death by TNF-alpha. Neither synthetic MMP inhibitors nor glycosylated bioactive TIMP-3 are able to achieve these effects. Gene transfer of TIMP-3 inhibits the TNF-alpha-induced activation of NF-kappaB in rheumatoid arthritis synovial fibroblasts and reduces the up-regulation of soluble Fas/CD95 by TNF-alpha, but has no effects on the cell surface expression of Fas. Collectively, our data demonstrate that intracellularly produced TIMP-3 not only induces apoptosis, but also modulates the apoptosis-inhibiting effects of TNF-alpha in human rheumatoid arthritis synovial fibroblast-like cells. Thus, our findings may stimulate further studies on the therapeutic potential of gene transfer strategies with TIMP-3.  相似文献   

12.
Hyperproliferation of synovial fibroblasts is considered to be a pivotal event in the pathogenesis of rheumatoid arthritis (RA). Luteolin, a flavonoid, inhibits the proliferation of synovial fibroblasts in collagen-induced arthritic rats. Treatment with luteolin also decreases the secretion of matrix metalloprotease-1 and -3 and the expression of IL-6, IL-8, IL-15, and TGF-β. Luteolin treatment caused a delay of cells in the G2/M phase. Interestingly, combination treatment with luteolin and TNF-α exhibited a synergistic inhibitory effect in all experiments. Western blotting demonstrated that treatment with luteolin alone or combined with TNF-α inhibited the MAPK/ERKs and PI3K-Akt pathways. These results indicate that luteolin inhibits the proliferation and partially blocks the pathogenic function of synovial fibroblasts in rheumatoid arthritis.  相似文献   

13.
14.
Collagenase-3 (matrix metalloproteinase, MMP-13) plays an important role in the degradation of cartilage in pathologic conditions. MMP-13 is elevated in joint tissues in both rheumatoid arthritis (RA) and osteoarthritis (OA). In addition, inflammation-stimulated synovial fibroblasts are able to release MMP-13 and other cytokines in these diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) ligands are recently considered as new anti-inflammatory compounds and these ligands were reported to ameliorate inflammatory arthritis. The aim of this study is to evaluate the mechanisms how PPARγ ligands inhibit the inflammatory response in synovial fibroblasts. Two PPARγ ligands, cyclopentenone prostaglandin 15-deoxy-Δ(12,14) -prostaglandin-J2 (15d-PGJ2) and synthetic thiazolidinedione compound ciglitazone were examined in this study. Here we found that 15d-PGJ2 and ciglitazone markedly inhibited TNF-α-induced MMP-13 production in human synovial fibroblasts. In addition, activation of nuclear factor κB (NF-κB) is strongly associated with MMP-13 induction by TNF-α and the activation of NF-κB was determined by Western blot, reporter assay, and immunofluorescence. It was found that 15d-PGJ2 markedly attenuated the translocation of NF-κB by direct inhibition of the activation of IKK via a PPARγ-independent manner. Ciglitazone also inhibits TNF-α-induced MMP-13 expression by suppressing NF-κB activation mainly via the modulation of p38-MAPK. Collectively, our data demonstrate that 15d-PGJ2 and ciglitazone attenuated TNF-α-induced MMP-13 expression in synovial fibroblasts primarily through the modulation of NF-κB signaling pathways. These compounds may have therapeutic application in inflammatory arthritis.  相似文献   

15.
Classical chemoattractants such as fMLP or the complement factor C5a use G protein (Gi)-coupled receptors to stimulate both chemotaxis and production of reactive oxygen species (respiratory burst, RB) by polymorphonuclear leukocytes (PMN). The chemokine stroma cell-derived factor 1alpha (SDF1alpha) and its Gi-coupled receptor, CXCR4, regulate leukocyte trafficking and recruitment to the synovial fluid of rheumatoid arthritic patients (RA-SF). However, the role of SDF1alpha in the RB is unknown and was studied in this work in vitro with healthy PMN in the absence and presence of RA-SF. In healthy PMN, SDF1alpha failed to stimulate the RB, even though the p38 mitogen-activated protein kinase was activated to a similar level as in fMLP-stimulated PMN. In contrast, the SDF1alpha-mediated calcium transients and activation of phosphatidylinositol 3-kinase/Akt were partially deficient, while p44/42 mitogen-activated protein kinases were not activated. SDF1alpha actually desensitized weakly the fMLP-mediated RB of healthy PMN. This cross-inhibitory effect was amplified in PMN treated with RA-SF, providing a protection against the exacerbation of RB induced by C5a or fMLP. This SDF1alpha beneficial effect, which was prevented by the CXCR4 antagonist AMD3100, was associated with impairment of C5a- and fMLP-mediated early signaling events. Thus, although SDF1alpha promotes leukocyte emigration into rheumatoid synovium, our data suggest it cross-desensitizes the production of oxidant by primed PMN, a property that may be beneficial in the context of arthritis.  相似文献   

16.
A growing body of evidence points toward activated fibroblasts, also known as myofibroblasts, as one of the leading mediators in several major human pathologies including proliferative fibrotic disorders, invasive tumor growth, rheumatoid arthritis, and atherosclerosis. Niemann-Pick Type C2 (NPC2) protein has been recently identified as a product of the second gene in NPC disease. It encodes ubiquitous, highly conserved, secretory protein with the poorly defined function. Here we show that NPC2 deficiency in human fibroblasts confers their activation. The activation phenomenon was not limited to fibroblasts as it was also observed in aortic smooth muscle cells upon silencing NPC2 gene by siRNA. More importantly, activated synovial fibroblasts isolated from patients with rheumatoid arthritis were also identified as NPC2-deficient at both the NPC2 mRNA and protein levels. The molecular mechanism responsible for activation of NPC2-null cells was shown to be a sustained phosphorylation of ERK 1/2 mitogen-activated protein kinase (MAPK), which fulfills both the sufficient and necessary fibroblast activation criteria. All of these findings highlight a novel mechanism where NPC2 by negatively regulating ERK 1/2 MAPK phosphorylation may efficiently suppress development of maladaptive tissue remodeling and inflammation.  相似文献   

17.
Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells.  相似文献   

18.
19.
Calcineurin is a calcium-activated phosphatase to mediate lymphocyte activation and neuron signaling, but its role in inflammatory arthritis remains largely unknown. In this study, we demonstrate that calcineurin was highly expressed in the lining layer, infiltrating leukocytes, and endothelial cells of rheumatoid synovium. The basal expression levels of calcineurin were higher in the cultured synoviocytes of rheumatoid arthritis patients than those of osteoarthritis patients. The calcineurin activity in the synoviocytes was increased by the stimulation with proinflammatory cytokines such as IL-1beta and TNF-alpha. Moreover, rheumatoid arthritis synoviocytes had an enlarged intracellular Ca(2+) store and showed a higher degree of [Ca(2+)](i) release for calcineurin activity than osteoarthritis synoviocytes when stimulated with either TNF-alpha or phorbol myristate acetate. IL-10, an anti-inflammatory cytokine, failed to increase the Ca(2+) and calcineurin activity. The targeted inhibition of calcineurin by the overexpression of calcineurin-binding protein 1, a natural calcineurin antagonist, inhibited the production of IL-6 and matrix metalloproteinase-2 by rheumatoid synoviocytes in a similar manner to the calcineurin inhibitor, cyclosporin A. Moreover, the abundant calcineurin expression was found in the invading pannus in the joints of mice with collagen-induced arthritis. In these mice, calcineurin activity in the cultured synovial and lymph node cells correlated well with the severity of arthritis, but which was suppressed by cyclosporin A treatment. Taken together, our data suggest that the abnormal activation of Ca(2+) and calcineurin in the synoviocytes may contribute to the pathogenesis of chronic arthritis and thus provide a potential target for controlling inflammatory arthritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号