首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of UDP-[14C]galactose with membranes of Bacillus coagulans led to the formation of a radioactive glycolipid, which was tentatively characterized as beta-galactosyl phosphorylpolyprenol (Gal-P-prenol) on the basis of its chromatographic behavior and data from structural analysis of its sugar 1-phosphate moiety. The sugar moiety of [14C]Gal-P-prenol was shown to be incorporated into a membrane-bound polymer, which coincided with the diacyl form of lipoteichoic acid in its chromatographic behavior on columns of Sephacryl S-300, DEAE-Sephacel and octyl-Sepharose. Hydrogen fluoride hydrolysis of the polymer afforded an alpha-galactoside identical with Gal(alpha 1----2)Gro obtained from lipoteichoic acids. The incorporation of galactose residues from [14C]Gal-P-prenol into the polymer was greatly enhanced by exogenous lipoteichoic acids, especially of the diacyl and monoacyl forms. The optimal pH and metal concentration for the Gal-P-prenol formation, respectively, were found to be 8.4 and 10 mM (MgCl2), whereas those for the transfer of galactose from this lipid intermediate to polymer were 4.5 and 16 mM (CaCl2). The above results lead to the conclusion that Gal-P-prenol serves as the direct galactosyl donor in the synthesis of lipoteichoic acids in B. coagulans.  相似文献   

2.
W D Nunn 《Biochemistry》1977,16(6):1077-1081
Experiments were performed to determine how phenethyl alcohol inhibits phospholipid synthesis in E. coli. At a nonbacteriostatic concentration, the drug reduces the rate of de novo fatty acid and phospholipid synthesis by 60 to 70%. The inhibition of fatty acid synthesis was found to be a secondary consequence of the inhibition of phospholipid synthesis. Phenethyl alcohol reduces the rate of incorporation of exogenous fatty acids into the phospholipids of a fatty acid auxotroph by 60%. These results indicate that this drug controls phospholipid synthesis beyond the level of fatty acid synthesis. Phenethyl alcohol inhibits the synthesis of phospholipids containing saturated fatty acids to a greater extent than it does the synthesis of phospholipids containing unsaturated fatty acids. It controls the synthesis of phospholipids containing saturated fatty acids at both the level of fatty acid synthesis and the level of incorporation of the saturated fatty acids into phospholipids. The synthesis of phospholipids containing unsaturated fatty acids is inhibited at the level of incorporation of the fatty acids into phospholipids.  相似文献   

3.
Membrane fractions from a lon strain of Escherichia coli but not a wild-type strain catalyze the incorporation of fucose from guanosine 5'-diphosphate-fucose into a lipid and into polymeric material. Both incorporation reactions specifically require only uridine 5'-diphosphate (UDP)-glucose. The sugar lipid was shown to be an intermediate in the synthesis of the polymer which was related to colanic acid. The sugar lipid had the structure (fucose3, glucose2)-glucose P-P-lipid. Its behavior on column and thin-layer chromatography, the rates of its hydrolysis in acid and base, and the response of its synthesis to inhibitors are all identical to the other sugar-lipid intermediates which have been shown to contain sugars attached to the C55-polyisoprenol, undecaprenol, by a pyrophosphate linkage. The membrane fractions from both the lon strain and the wild-type strain also catalyzed the incorporation of either glucose from UDP-glucose or galactose from UDP-galactose into a lipid fraction which was shown to contain the free sugar attached by a monophosphate linkage to an undecaprenol-like lipid. This lipid was isolated and its nuclear magnetic resonance spectra was identical to undecaprenol. The membrane fractions from both strains also incorporated glucose from UDP-glucose into glycogen and into a polymer that behaved like Escherichia coli lipopolysaccharide. Conditions were found where the incorporation of glucose could be directed specifically into each compound by adding the appropriate inhibitors.  相似文献   

4.
Srivastava  N.K.  Misra  A.  Sharma  S. 《Photosynthetica》1998,35(3):391-398
Changes in the utilization pattern of primary substrate, viz. [U-14C] acetate, 14CO2 and [U-14C] saccharose, and the contents of 14C fixation products in photosynthetic metabolites (sugars, amino acids, and organic acids) were determined in Fe-deficient citronella in relation to the essential oil accumulation. There was an overall decrease in photosynthetic efficiency of the Fe-deficient plants as evidenced by lower levels of incorporation into the sugar fraction and essential oil after 14CO2 had been supplied. When acetate and saccharose were fed to the Fe-deficient plants, despite a higher incorporation of label into sugars, amino acids, and organic acids, there was a lower incorporation of these metabolites into essential oils than in control plants. Thus, the availability of precursors and the translocation to a site of synthesis/accumulation, severely affected by Fe deficiency, is equally important for the essential oil biosynthesis in citronella.  相似文献   

5.
Using cell permeabilization, a technique which allows addition of exogenously supplied radiolabeled sugar nucleotides to serve as direct glycosyl donors, oligosaccharide biosynthesis was examined in fibroblasts obtained from normal and cystic fibrosis (CF) subjects. Incubation of logarithmically growing cells with either radiolabeled leucine or xylose has indicated that there was a difference in the synthetic rate between the cell types. Protein synthesis in normal cells made permeable with 50 m?g/ml lysolecithin (LL) was demonstrated to be absent, and could not be induced to take place by adding exogenous components, including energy sources and amino acids, normally required for protein synthesis. Thus radiolabeled sugars were being added to peptide acceptors which were already present at the time of LL addition. Both permeable and intact fibroblasts were exposed to labeled UDP-xylose, UDP-galactose, and UDP-glucuronic acid, all donors of mucopolysaccharide precursors. The uptake of xylose into protein was the same for both normal and CF cells, but permeable CF fibroblasts incorporated statistically greater amounts of sugar from UDP-galactose and UDP-glucuronic acid. Intact CF cells were also labeled using these two sugar nucleotides. Trypan blue exclusion indicated CF and normal fibroblasts were equally intact. This and the fact that preincubation of CF cells with the appropriate cold sugar nucleotide eliminated the differences in incorporation between the normal and CF cells suggested that CF fibroblasts had more cell surface acceptor than the normal cells.  相似文献   

6.
From the kinetics of incorporation into protein shown by four amino acids and one amino acid analogue in suspension cultured HeLa S-3 cells, two distinctly different patterns were observed under the same experimental conditions. An initial slow exponential incorporation followed by linear kinetics was characteristic of the two non-essential amino acids, glycine and proline, whereas the two essential amino acids studied, phenylalanine and leucine, showed linear kinetics of incorporation with no detectable delay. The analogue amino acid, p-fluorophenylalanine also showed immediate linear kinetics of incorporation. There was a poor correlation between the rate of formation of acid-soluble pools and incorporation kinetics. However, the rate of formation of the freely diffusible pool of amino acids correlated more closely with incorporation kinetics. The lack of direct involvement of the acid-soluble pool in protein synthesis was also demonstrated by pre-loading of pools before treatment of cells with labelled amino acids. The results partially support the hypothesis that precursor amino acids for protein synthesis come from the external medium rather than the acid-soluble pool, but suggest that the amino acid which freely diffuses into the cell from the external medium could also be the source.  相似文献   

7.
Gillard  BK; Clement  RG; Marcus  DM 《Glycobiology》1998,8(9):885-890
There are several pathways for the incorporation of sugars into glycosphingolipids (GSL). Sugars can be added to ceramide that contains sphinganine (dihydrosphingosine) synthesized de novo (pathway 1), to ceramide synthesized from sphingoid bases produced by hydrolysis of sphingolipids (pathway 2), and into GSL recycling from the endosomal pathway through the Golgi (pathway 3). We reported previously the surprising observation that SW13 cells, a human adrenal carcinoma cell line, synthesize most of their GSL in pathway 2. We now present data on the synthesis of GSL in four additional cell lines. Approximately 90% of sugar incorporation took place in pathway 2, and 10% or less in pathway 1, in human foreskin fibroblasts and NB41A3 neuroblastoma cells. In contrast, approximately 50-90% of sugar incorporation took place in pathway 1 in C2C12 myoblasts. The C2C12 cells divide more rapidly and synthesize 10-14 times as much GSL as the other three cell lines. In C6 glioma cells, approximately 30% of sugar incorporation occurred in pathway 1 and 60% in pathway 2. There was no relation between the utilization of pathways for GSL and sphingomyelin synthesis in foreskin fibroblasts and C2C12 cells. In both cells pathways 1 and 2 each accounted for 50% of incorporation of choline into sphingomyelin. In five of the six cell lines that we have studied, most GSL synthesis takes place in pathway 2. We suggest that when the need for synthesis is relatively low, as in slowly dividing cells, GSL are synthesized predominantly from sphingoid bases salvaged from the hydrolytic pathway. When cells are dividing more rapidly, the need for increased synthesis is met by upregulating the de novo pathway.   相似文献   

8.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

9.
This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.  相似文献   

10.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

11.
Metabolism of arabinose 5-P, ribose 5-P and glucose 6-P in permeabilized and resealed Morris hepatoma 5123TC cells was investigated by measuring the contribution of these compounds to nucleic acid biosynthesis. The level of [14C]-arabinose (non-phosphorylated) incorporation into nucleic acids was slight, presumably due to the low activity of the transport system or the absence or low activity of a specific 'kinase' enzyme. The permeabilizing procedure involved the brief treatment of Morris hepatoma 5123TC cells with lysolecithin and resulted in a cell population which was permeable to charged compounds i.e. sugar phosphates and nucleotides, that otherwise could not cross the plasma membrane. The permeabilized (and resealed cells) retained normal cellular morphology and intactness of specific organelles as judged by the maintenance of functional properties. Following permeabilization, these cells resealed when transferred back to normal growth medium, and continued to divide and increase at the same rates as control non-permeabilized cell cultures. The permeabilized cells incorporated deoxyribonucleotides ([methyl -3H]-TTP) into DNA at a linear rate of 0.047 nmol per 10(7) cells min-1, representing 90-100 per cent of the DNA synthesis rate in vivo. The permeabilization technique, when coupled with procedures to establish cell synchrony, permitted the comparative estimate of the contributions of [14C]-labelled arabinose 5-P, ribose 5-P and glucose 6-P to RNA, DNA, amino acids, CO2, lactate and sugar mono- and bisphosphates. The percentage of [14C]-isotope incorporated into total nucleic acids by these three labelled sugar phosphates were 2.3, 4.9 and 6.3 respectively. Possible reasons for the lower incorporation of 14C from arabinose 5-P are given. The results are consistent with the proposal that arabinose 5-P, an intermediate of the L-type pentose pathway activity of 5123TC cells, was incorporated into nucleic acids by its interconversion with ribulose 5-P and ribose 5-P and thus into PRPP. This study represents the first report of sugar phosphate as opposed to free sugar metabolism by tumour cells in culture.  相似文献   

12.
When the localization of mycolic acid biosynthetic activity was examined with Bacterionema matruchotii cells disrupted by the ultrasonic vibration method, activity was detected only in the cell wall fraction, not in the inner membrane nor in the 78,000g supernatant. Either the supernatant or sugar was absolutely required for the incorporation of [14C]palmitate into mycolic acids. Among sugars examined, glucose was most effective, with maltose being second. Unexpectedly, trehalose was inert. As to substrate, the present system utilized free palmitic acid rather than palmitoyl-CoA. The reaction products from palmitate and glucose were glucose mycolate and trehalose monomycolate, in which the label from [14C]palmitate or [14C]glucose was incorporated. Glucose palmitate was also formed. Addition of trehalose resulted in a shift from glucose mycolate to trehalose monomycolate. These data clearly indicate that sugars play an important role in the synthesis of mycolic acids from free fatty acids.  相似文献   

13.
Colicin K greatly decreased the incorporation of 32P-labeled inorganic orthophosphate into nucleotides and nucleic acids, causing a concomitant increase in the formation of 32P-labeled sugar phosphates in sensitive cells of Escherichia coli. These sugar phosphates were formed in aerobically growing cells, as well as in cells under stringent control of ribonucleic acid synthesis. The main 32P-labeled product was identified as sedoheptulose 7-phosphate in two strains (B1 and K-12 MK-1) and fructose 1,6-diphosphate in one strain (K-12 CP78). The formation of sugar phosphates induced by colicin K was inhibited by carbonyl cyanide m-chlorophenylhydrazone. It was also not observed in N,N'-dicyclohexylcarbodiimide-treated cells or Mg2+-(Ca2+)-adenosine triphosphatase-less mutant (strain K-12 AN120) cells. Thus, the formation of sugar phosphates in colicin K-treated cells is dependent on the formation of adenosine 5'-triphosphate by oxidative phosphorylation.  相似文献   

14.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

15.
Rhamnolipids and poly(beta-hydroxyalkanoic acids) (PHAs) are important fermentation products of Pseudomonas aeruginosa. Both contain beta-hydroxyalkanoic acids as main constituents. To investigate the possible relationship between their syntheses, we studied the n-hexadecane fermentation by P. aeruginosa (ATCC 10145). PHA synthesis was found to occur only during active cell growth, while substantial rhamnolipid production began at the onset of the stationary phase. The specific synthesis rate of beta-hydroxyalkanoic acids was estimated as 12.6 mg HA/(g dry cells.h) from the PHA formation during the exponential-growth phase. A similar rate was obtained from the beta-hydroxyalkanoic acid incorporation in the rhamnolipids produced during the early stationary phase. A regulatory switch of the flow of beta-hydroxyalkanoic acids from PHA polymerization to rhamnolipid synthesis is clearly indicated to occur when the culture reaches the stationary phase. Five rhamnolipid structures were identified using HPLC-MS. Three are monorhamnolipids, two dirhamnolipids. All have a chain of two beta-hydroxyalkanoic acids. The two major components contain only beta-hydroxydecanoic acids; the three minors also have a beta-hydroxydecanoic acid linked to the sugar but a beta-hydroxydodecanoic acid or beta-hydroxydodecenoic acid as the second acid. The PHA accumulation reached about 7.5% of the cell dry weight. The monomer composition was relatively constant at different stages of production: in weight fractions, beta-hydroxyoctanoic acid, 0.25 (+/-0.05); beta-hydroxydecanoic acid, 0.41 (+/-0.06); beta-hydroxydodecanoic acid, 0.11 (+/-0.05), beta-hydroxytetradecanoic acid, 0.11 (+/-0.06), and beta-hydroxyhexadecanoic acid, 0.12 (+/-0.06). beta-Hydroxydecanoic acid was clearly the primary monomer.  相似文献   

16.
The rates of incorporation of 14C from 14C labelled acetate, glucose, alanine, leucine, isoleucine and valine into fatty acids has been measured in perirenal adipose tissue from foetal lambs and 8-month-old sheep, and into both fatty acids and acylglycerol glycerol in adipose tissue from 3-year-old sheep and 220-240 g female rats. Rates of incorporation of 14C from amino acids into fatty acids were much lower in adipose tissue from sheep (at all three ages) than from rats, whereas rates of incorporation of 14C into acylglycerol glycerol were either greater in sheep adipose tissue or the same as in rat adipose tissue. The rate of incorporation of 14C from amino acids into fatty acids decreased in the order leucine greater than alanine greater than isoleucine greater than valine in adipose tissue from rats and foetal lambs, and in the order leucine greater than alanine = isoleucine greater than valine in adipose tissue from 8-month- and 3-year-old sheep. Amino acids make a very small contribution to fatty acid synthesis in adipose tissue from sheep at all stages of development examined while fatty acids are a minor product of amino acid metabolism in sheep adipose tissue. The study provides further evidence for an important role for ATP-citrate lyase in restricting the utilization of acetyl-CoA generated in the mitochondria for fatty acid synthesis.  相似文献   

17.
Summary The utilization of glucose and pyruvate by the yeast Rhodotorula glutinis in a medium containing both carbon sources has been studied. Glucose is readily consumed whereas the uptake of pyruvate is completely blocked by the presence of the sugar.The content of pyruvate kinase and phosphoenolpyruvate carboxykinase in R. glutinis cells growing on glucose plus pyruvate are drastically affected with time by the disappearance of the sugar from the culture medium. After complete exhaustion of glucose, the level of pyruvate kinase drops sharply down to a minimum whereas that of phosphoenolpyruvate carboxykinase rises abruptly up to a maximum.Feeding experiments with labelled compounds show that glucose affects the utilization of the amino acids alanine and aspartate, and conversely that the amino acids influence the utilization of the sugar. Glucose breakdown and its incorporation into polysaccharides is controlled by the amino acids and gluconeogenesis from the amino acids is controlled by the sugar.  相似文献   

18.
Pulse-labeling with N-[acetyl-(3)H] glucosamine and radioautography were used to follow the sites of chitin incorporation in hyphae of an Aspergillus nidulans mutant blocked in amino sugar synthesis. Growing hyphae incorporated N-acetylglucosamine almost exclusively at the tip. Cycloheximide addition greatly increased the label in subapical regions of the hyphae and reduced that at the tip. This effect of cycloheximide was immediate, could be reversed by removing the inhibitor, and did not appear to be due to chitin turnover. A similar change from apical to subapical N-acetylglucosamine incorporation occurred after hyphae were subjected to an osmotic shock which did not inhibit protein synthesis. The two treatments induced morphogenetic changes in the hyphae which produced abnormally large numbers of branches and septa.  相似文献   

19.
Protein synthesis in isolated cell nuclei   总被引:45,自引:0,他引:45       下载免费PDF全文
1. Nuclei prepared from calf thymus tissue in a sucrose medium actively incorporate labelled amino acids into their proteins. This is an aerobic process which is dependent on nuclear oxidative phosphorylation. 2. Evidence is presented to show that the uptake of amino acids represents nuclear protein synthesis. 3. The deoxyribonucleic acid of the nucleus plays a role in amino acid incorporation. Protein synthesis virtually ceases when the DNA is removed from the nucleus, and uptake resumes when the DNA is restored. 4. In the essential mechanism of amino acid incorporation, the role of the DNA can be filled by denatured or partially degraded DNA, by DNAs from other tissues, and even by RNA. Purine and pyrimidine bases, monoribonucleotides, and certain dinucleotides are unable to substitute for DNA in this system. 5. When the proteins of the nucleus are fractionated and classified according to their specific activities, one finds the histones to be relatively inert. The protein fraction most closely associated with the DNA has a very high activity. A readily extractable ribonucleoprotein complex is also extremely active, and it is tempting to speculate that this may be an intermediary in nucleocytoplasmic interaction. 6. The isolated nucleus can incorporate glycine into nucleic acid purines, and orotic acid into the pyrimidines of its RNA. Orotic acid uptake into nuclear RNA requires the presence of the DNA. 7. The synthesis of ribonucleic acid can be inhibited at any time by a benzimidazole riboside (DRB) (which also retards influenza virus multiplication (11)). 8. The incorporation of amino acids into nuclear proteins seems to require a preliminary activation of the nucleus. This can be inhibited by the same benzimidazole derivative (DRB) which interferes with RNA synthesis, provided that the inhibitor is present at the outset of the incubation. DRB added 30 minutes later has no effect on nuclear protein synthesis. These results suggest that the activation of the nucleus so that it actively incorporates amino acids into its proteins requires a preliminary synthesis of ribonucleic acid. 9. Together with earlier observations (27, 28) on the incorporation of amino acids by cytoplasmic particulates, these results show that protein synthesis can occur in both nucleus and cytoplasm.  相似文献   

20.
The action of light on protein synthesis was examined in the cabbage seedlings, a system extensively used in the studies of anthocyanin synthesis. Continuous red and far red light have no effect on total protein content while they cause a marked decrease in the level of free amino acids in cabbage seedlings. The rate of protein synthesis, measured as incorporation of radioaetively-labelled amino acids into proteins, is clearly stimulated by light. Phytochrome involvement in the light stimulation of the incorporation is also demonstrated by the red-far red reversibility of the response. The relative effectiveness of continuous red and far red light upon the incorporation of amino acids into proteins is affected by the nature of the system used to study the incorporation process. When excised cotyledons and short period of incorporation were used, continuous far red was more effective than red. However, when whole seedlings and long period of incorporation were used, red and far red were equally effective. Streptomycin causes a 10– 15% decrease in the rate of incorporation of amino acids into proteins of all cellular fractions, except the plastid fraction where a much higher inhibition (30%) was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号