首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic receptors for 1α, 25-dihydroxyvitamin D3 from human parathyroid adenoma tissue and rachitic chick parathyroid glands have been characterized with regard to a number of physical, chemical, and ligand binding properties. Both receptors are 3.6–3.7 S proteins with molecular weights of approximately 75,000 and Stoke's molecular radii of 36 Å. It was found that the receptors possess a cysteine residue in or near the 1α, 25-dihydroxyvitamin D3 binding site which is critical for ligand binding activity. The receptors both have equilibrium dissociation constants for 1α, 25-dihydroxyvitamin D3 in the range of 2 to 5 × 10?10m at 4 °C and second-order association rate constants for their seco-steroid ligand of 1 × 107, m?1 min?1 (0 °C). The dissociation rate constants were found to be 5.3 × 10?4 min?1 (4 °C) for the human receptor and 1.3 × 10?5 min?1 (4 °C) for the chick receptor. The great deal of similarity which exists between the cytoplasmic 1α, 25-dihydroxyvitamin D3 receptors from avian and mammalian parathyroid glands suggests a homologous function for these molecules in the two tissues.  相似文献   

2.
We have examined the messenger RNA which codes for the ribosomal proteins in Ehrlich ascites tumor cells. Poly(A)-containing mRNA was isolated from polysomes and fractionated into 11 size classes whose average molecular weights were between 1.8 × 105 and 24 × 105. These mRNAs were used to direct protein synthesis in a fractionated translational system that was derived completely from Ehrlich ascites tumor cells. More than 90% of the ribosomal proteins which we could identify were coded for by mRNAs averaging in size between Mr = 180 × 103 and 320 × 103. The small size of these mRNAs indicates that the cytoplasmic mRNAs which specify the ribosomal proteins are monocistronic. We could detect the synthesis of 36 of 48 ribosomal reference proteins as well as 20 additional polypeptides which had characteristics similar to ribosomal protein. The ribosomal proteins were identified on the basis of their positive charge, small size, electrophoretic properties on two-dimensional polyacrylamide gels and chromatographic characteristics on carboxymethyl-cellulose.  相似文献   

3.
We have previously characterized a specific corticosterone binding protein in chromosomal non histone proteins (NHP) from rat liver. In this paper, we present evidence that a relationship exists between this protein and the cytoplasmic glucocorticoid receptor. The binding capacity of NHP is reduced by 40 p. cent when this fraction is isolated from adrenalectomized animals. Incubation of isolated nuclei with the glucocorticoid hormone receptor complex results in a decrease in the specific radioactivity of the cytoplasmic proteins and simultaneously in a rapid uptake of the isotope by the nucleus; radioactive hormone was extracted along with the NHP. Evidence is presented that the NHP component binding the hormone is closely related or identical to the cytoplasmic receptor-proteins. Progesterone and corticosterone compete similarly for the binding of dexamethasone to nuclear and cytoplasmic forms of the receptor. However the nuclear form of the receptor has a higher affinity for corticosterone (Ka : 6 × 109 M−1) than for dexamethasone (KA : 108 M−1) in vitro.A mixture of rat liver NHP and cytosol was shown to bind specifically more corticosterone than when the two proteins were incubated separately with the hormone. The Scatchard analysis shows that the enhancement of binding is due to an interaction of nuclear and cytoplasmic proteins leading to the appearance of a stable protein-protein complex which has a high affinity for the hormone (Ka : 2 × 108 M−1). KCl prevented this interaction. Complex formation does not require the presence of the hormone. The experiments presented here favor the hypothesis of the existence of a regulatory protein in the nucleus. This protein associated with the binding protein to reveal or enhance the active form of the receptor.  相似文献   

4.
Specific substances binding [3H]triamcinolane acetonide were detected in the cytosol fraction of the lactating mammary gland of the rat using sucrose gradient centrifugation. These receptors, which were protein in nature, exhibited sedimentation coefficients of 7–8 S and dissociated into lower molecular weight components sedimenting at 4–5 S when separated on sucrose gradients containing 0.4 M KCl. The cytoplasmic form of the binding protein was relatively specific for glucocorticoids although progesterone inhibited binding significantly. The dissociation constant (Kd) of the receptor-ligand complex was in the range of 10−8 M. p-Chloromercuribenzoate diminished the ligand-binding capacity of the receptor suggesting a role for sulfhydryl groups in the binding reaction. Cytosols from mammary tissue obtained from virgin and pregnant rats revealed a paucity of binding sites as compared to those in the lactating gland. Examination of ligand-binding specificity indicates that these glucocorticoid-binding sites are distinct and easily discriminated from those of either the estrogen receptor of the mammary gland or the triamcinolone-binding component in plasma.  相似文献   

5.
The binding activity of [3H]dexamethasone to the specific receptor was studied in the cytoplasmic fraction of a established fibroblast line derived from rat carrageenin granuloma in culture condition. Specific receptor to dexamethasone was demonstrated. Scatchard analysis revealed a single class of binding sites with a dissociation constant for [3H]dexamethasone of 3.64 · 10?8 M and a concentration of binding sites of 0.825 pmol per mg cytosol protein. The number of cytoplasmic binding sites per cell was calculated at 1.15 · 105.Total binding activity to [3H]dexamethasone of the cytoplasmic fraction was enhanced when the cells were cultured in a medium containing salicylic acid at 37°C. The maximum enhancement was seen at the concentration of 10?3 M and in 3 h treatment of salicylic acid. This enhancement by salicylic acid was lost when cycloheximide was added to the culture medium at the same time. If salicylic acid was added to the cell free system, it showed no effect on the binding activity. The other non-steroidal anti-inflammatory drugs; phenylbutazone and indomethacin, also enhanced the total binding activity to [3H]dexamethasone of the cytoplasmic fraction at the concentration of 2 · 10?5 M and 2 · 10?7 M, respectively.  相似文献   

6.
Dog kidney cytosol contains a high molecular weight (50 000–70 000) and a low molecular weight (approx. 6000) thyronine-binding protein. Low molecular weight cytosol thyronine-binding protein has not been previously recognized in cytoplasm. Binding of thyroxine (tetraiodothyronine, T4) by the low molecular weight protein has a half-time of association of more than 24 h and accounts for 32% of bound cytoplasmic tetraiodothyronine after 48 h of incubation. Binding of labeled tetraiodothyronine and triiodothyronine by this moiety is non-dissociable in the presence of 1 · 10?5 M unlabeled tetra- or triiodothyronine. The low molecular weight protein exists in a dispersed and apparently aggregated form; the latter elutes in the void volume on Sephadex G-100 and its generation is minimized by 2 mM Ca2+. This binding protein elutes in a fraction which has a high A260nm : A280nm ratio, is pentose enriched (orcinol method) and which, because of these characteristics and low susceptibility to digestion by nuclease, is postulated to be a ribosylated cytoplasmic protein or polypeptide.Binding of tetra- and triiodothyronine by the high molecular weight protein has a half-time of association of 2 h and is saturable. Displacement of labeled triiodothyronine from this cytosol thyronine-binding protein is more readily effected with excess unlabeled tetra- than with triiodothyronine, indicating the absence of a triiodothyronine-specific cytosol thyronine-binding protein site. 3,3′,5′-Triiodothyronine (reverse triiodothyronine) is bound with low avidity. Uptake of high molecular weight protein by isolated kidney cell nuclei cannot be demonstrated.Binding of tetraiodothyronine by cytosol proteins is independent of pH in the pH range 6.8–8.9, but binding of triiodothyronine is minimized at pH 7.4 and enhanced at alkaline pH to the point of equivalency of tetra- and triiodothyronine binding at pH 8.9.At concentrations of tetraiodothyronine calculated to exist intracellularly, essentially all soluble fraction tetraiodothyronine is bound to cytosol thyronine-binding protein, restricting access of this iodothyronine to binding sites in nucleus and mitochondria. Cytosol removes labeled tetra- and triiodothyronine previously reacted in vitro with isolated cell nuclei; such removal is a linear function of cytosol protein concentration and is blocked by saturation of cytosol thyronine-binding protein with unlabeled iodothyronines. Only the high molecular weight protein accounts for unbinding by cytosol of nuclear hormone.  相似文献   

7.
The binding of 3H-dexamethasone to cytosolic receptors in fetal jaws and in cytosols and nuclei of primary cell cultures of fetal palates was studied in various congenic strains of mice. The amount of specific binding was greater in palatal tissues from B10.A and BlO.A(2R) mice than in B10 or B10.A(5R) preparations. These differences were not observed in the liver. Since the strains with higher levels of glucocorticoid receptor are known to be more susceptible to cortisone-induced cleft palate than the strains with low receptor levels, it is suggested that quantitative variation in receptor levels may be involved in determining H-2-linked differences in cleft-palate susceptibility. Whether or not this is the case, it appears that an H-2-linked gene affects the quantity of a cytosolic glucocorticoid-binding protein which translocates to the nucleus.  相似文献   

8.
Systematic thermodynamic studies have been conducted for flavin (FMN, FAD) binding to purified riboflavin-binding proteins from hen egg white and egg yolk. These studies were conducted under a variety of temperature (14, 26, and 38 °C), pH (4.5, 5.5, 6.5, 7.4, and 9.0), and buffer conditions, and an extensive thermodynamic profile was constructed. Enthalpies of binding FMN to white riboflavin-binding protein and yolk riboflavin-binding protein were ?19.3 and ?14.4 kcal/mol, respectively, at pH 7.4 and 38 °C. FAD bound to white and yolk riboflavin-binding proteins under the same conditions with ΔH values of ?11.7 and ?6.0, respectively. Binding constants of about 105 and 104 were obtained for FMN and FAD, respectively, and were the same for both proteins under all conditions studied. Using established thermodynamic relationships, we were able to calculate entropy and free energy changes. Entropies indicated a large degree of ordering in the system upon flavin binding with FMN (about ?40 cal/mol/ °C) twice as large as FAD (about ?15 to ?25 cal/mol/ °C), which may indicate a structured solvent interaction with the charged phosphate group, or steric limitations placed on the ribityl side chain in the bound state. Our thermodynamic data support the idea that flavin binding is a mixture of forces, with no one predominant. Analysis of the data suggests that the nucleotide may bind both as the mono- or dianion, that flavin binding occurs with no significant change in the pK of any functional group in the system, except at low pH for FAD binding, and that the temperature variation of the enthalpy change is quite small. These findings are combined with other published data to outline a general scheme of flavin binding with a histidine residue implicated in hydrogen bonding to the adenine portion of FAD, which may be in the unstacked form.  相似文献   

9.
The binding of 125I-labeled α-bungarotoxin to membrane fragments prepared from Limulus brain tissue has been investigated. Toxin binding approaches saturation in the range of 30 to 40 nm, with maximum binding of 2 to 6 pmol/mg of protein. The saturation kinetics and the rate of displacement of bound toxin are consistent with multiple toxin binding sites. Pharmacological studies show that binding is inhibited by both cholinergic agonists and antagonists, I50′s for inhibition by d-tubocurarine, nicotine, decamethonium, carbachol, and atropine are 2 × 10?6, 7 × 10?6, 2 × 10?5, 6 × 10?4, and 3 × 10?4m, respectively. Nicotinic ligands inhibited binding much more effectively than muscarinic ligands. Toxin binding activity was solubilized with Triton X-100. Velocity sedimentation analysis of the solubilized activity revealed three separate components. Seventy to eighty percent of the binding activity had a sedimentation coefficient of 8.6 S. The remaining activity was composed of two components with sedimentation coefficients of 15.1 and 17 S.  相似文献   

10.
The Transplantable B-16 melanotic melanoma carried in syngeneic C57B1/6J female mice and the Syrian hamster melanoma cell line, RPMI 3460, were utilized to determine whether steroid-hormone receptors are present in animal melanomas. In the B-16 melanoma, a cytoplasmic-estrogen receptor is detectable, but there is no evidence for androgen or progestin receptors. Some tumors contain a glucocorticoid-binding macromolecule. Sucrosedensity gradient centrifugation of cytosol after incubation with [3H]-estradiol revealed an 8S peak that was suppressed by excess radioinert diethylstilbesterol. Binding varied from 5–35 fmoles per mg cytosol protein. Scatchard analysis of [3H]-estradiol binding in cytosol yielded a single class of high-affinity binding sites; the dissociation constant is 6 × 10?10 M. The receptor molecule is shown to be estrogen-specific by ligand competition assays. In contrast to B-16 melanoma, no estrogen, androgen, or progestin receptor can be found in the Syrian hamster melanoma cell line. However, a substantial level of specific binding is observed using [3H]-dexamethasone. Sucrose-gradient centrifugation of cytosol from this cell line after incubation with [3H]-dexamethasone revealed a 7S peak that was suppressed by excess radioinert dexamethasone. Scatchard analysis indicated a single class of high affinity sites with a dissociation constant of 2 × 10?9 M. Binding levels from 70–610 fmoles per mg cytosol protein were observed. The Syrian hamster melanoma cells also exhibit a biological response to glucocorticoids: Dexamethasone causes both an inhibition of growth and a decrease in final-cell density in these cells.  相似文献   

11.
A protein fraction has been purified from Gossypium hirsutum var. Coker 413 which synthesized all four geometrical isomers of farnesyl pyrophosphate from isopentenyl pyrophosphate alone, from isopentenyl pyrophosphate and geranyl or neryl pyrophosphate. Electrophoretic analysis showed that this protein fraction consisted of three proteins. One of these proteins contained isopentenyl pyrophosphate /ag dimethylallyl pyrophosphate isomerase activity. The other two proteins were insufficiently pure to characterize. Estimation of molecular weights by electrophoresis of the three proteins revealed values in the order of 3 × 104 to 1.3 × 105. However the same protein fraction eluted as one peak from Sepharose 6B molecular sieve columns, indicative of a larger protein component as could be accounted for by the electrophoretic molecular weight estimation. From these results and from the different products synthesized it is proposed that isopentenyl pyrophosphate /ag dimethylallyl pyrophosphate isomerase and prenyltransferase (farnesyl pyrophosphate synthetase) exists as a multiprotein complex in G. hirsutum.  相似文献   

12.
Colchicine-binding properties of the total cytoplasmic pool of tubulin from rat liver were evaluated in tubulin-stabilizing (TS) supernates. Microtubules were separated from free tubulin using a microtubule-stabilizing solution (MTS) and ultracentrifugation. [3H]Colchicine-binding properties of microtubule-derived tubulin were investigated in supernates prepared after resuspension of MTS pellets in TS. In TS buffer at 37 °C the colchicine-binding activity of the total cytoplasmic pool of tubulin decayed with T12 of 3.39 h. Resuspended pellet tubulin decayed much more rapidly under the same conditions with a T12 of 0.72 h. This rapid time decay of microtubule-derived tubulin was found to be at least partially attributable to prior microtubule-stabilizing solution exposure. Since tartrate has been reported to increase the rate of colchicine binding to tubulin, sodium tartrate (150 mm) was added to our colchicine-binding system. This addition increased the detectable [3H]colchicine binding by 10% in the total cytoplasmic preparation and by 85% in the resuspended pellet preparation. Addition of tartrate (150 mm) also resulted in a 105% increase in the T12 for total cytoplasmic tubulin and a 412% increase for microtubule derived tubulin. Total cytoplasmic supernates of liver bound [3H]colchicine linearly over a wide range of tissue concentrations. However, resuspended microtubule-stabilizing solution pellet supernates in tubulin-stabilizing solution showed some increase in colchicine binding per tissue weight in the more dilute samples. Our data which demonstrate differences in colchicine-binding properties for total cytoplasmic and microtubule-derived pools of tubulin suggest that present assays for hepatic tubulin polymerization which assume identical binding properties should be interpreted with caution.  相似文献   

13.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

14.
Of several methods employed for preparing 125I-calmodulin, only the glucose oxidase-lactoperoxidase system under controlled conditions produced an iodinated derivative which retained complete biological activity. Unlabeled calmodulin and 125I-calmodulin stimulated cyclic nucleotide phosphodiesterase from bovine brain interchangeably and both proteins displaced 125I-calmodulin from high-affinity binding sites on human erythrocyte ghosts with equal effectiveness. This procedure yielded a labeling stoichiometry of 1.34. Scatchard plots of binding of 125I-calmodulin to ghosts were consistent with the presence of a single class of high-affinity binding sites with the properties expected of (Ca2+ + Mg2+)-ATPase molecules. The binding showed positive cooperativity and occurred only in the presence of Ca2+. The maximum amount of binding seen in Scatchard plots corresponded to 4.1 × 103 sites per ghost.  相似文献   

15.
Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be Kpiperine?=?5.7 ± .2 × 105 M?1 and Kpiperine = 9.3± .25 × 104 M?1 which correspond to the free energy of ?7.8 and ?6.71 kcal M?1at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA–piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA–piperine complex reaches equilibration state at around 3 ns, which prove that the HSA–piperine complex is stable in nature.  相似文献   

16.
Long-chain fatty acids and their acyl-CoA esters are potent inhibitors of nuclear thyroid hormone (T3) receptor in vitro. In the present study, we obtained evidence for acyl-CoA binding activity in the nuclear extract from rat liver. The activity sedimented at a position (3.5 S) identical with that of the T3 receptor, and the two activities sedimented together. Similarly, they coeluted on DEAE-Sephadex. After partial purification of the receptor, it was again inhibited strongly by acyl-CoAs. Heat stability and a partial trypsin digestion of the receptor both suggested that the action site of oleoyl-CoA overlapped the T3-binding domain of the receptor. In addition, thyroid hormone receptor β1, synthesized in vitro, bound oleoyl-CoA specifically and its T3-binding activity was inhibited. The dissociation constant for oleoyl-CoA binding to the partially purified receptor was 1.2 × 10?7 M. This value as well as its molecular size distinguished the nuclear binding sites from the cytoplasmic fatty acid/acyl-CoA binding proteins. Oleoyl-CoA had no effect on the glucocorticoid receptor, another member of the nuclear hormone-receptor superfamily. From these results, we propose that thyroid hormone receptor is a specific acyl-CoA binding protein of the cell nucleus.  相似文献   

17.
—The major toxin of black widow spider venom, α-latrotoxin, can be iodinated with 125I with hardly any loss in biological activity. The radioactive toxin could bind specifically to a dog cerebral cortex synaptosomal membrane preparation but not to a dog liver plasma membrane preparation. The bound protein could be recovered from the neuronal membrane preparation in an unchanged form. Non-specific binding was only 6–10% of the total binding. The protein nature of the presumed receptor was indicated by the complete inhibition of the binding by either heating the membrane preparation at 70°C or treating the membrane with trypsin. Pre-incubation with 2%β-mercaptoethanol also completely inhibited the binding, while 70% inhibition was observed after pre-treatment with 10m M-EDTA or EGTA. From plots of the equilibrium binding data, it could be ascertained that the binding is non-cooperative, with an apparent equilibrium dissociation constant, K1, of 1.0 nM. Kinetic data gave an apparent association rate constant of 8.2 × 105 M?1 s?1. Dissociation followed a biphasic exponential with rate constants of 1.4 × 10?3 and 5.2 × 10?5s?1 corresponding to half-lives of 8.2 min and 3.7 h. Possible schemes for the binding interaction were proposed. Based on the present results and on previous results which indicated that α-latrotoxin causes the release of all neurotransmitters and a depletion of the synaptic vesicle population in vertebrate synapses, a hypothetical mechanism of the action for the toxin was proposed, involving the binding of the toxin to a membrane protein receptor which interacts with filamentous proteins linking the synaptic vesicles to the axolemma.  相似文献   

18.
Protein H, a molecule expressed at the surface of some strains of Streptococcus pyogenes, has affinity for the constant (lgGFc) region of immunoglobulin (lg) G. In absorption experiments with human plasma, protein H–sepharose could absorb not only lgG but also albumin from plasma. The affinity constant for the reaction between albumin and protein H was 7.8 × 109M−1, which is higher than the affinity between lgG and protein H (Ka= 1.6 × 109 M−1). Fragments of protein H were generated with deletion plasmids and polymerase chain reaction (PCR) technology. Using these fragments in various protein–protein interaction assays, the binding of albumin was mapped to three repeats (C1–C3) in the C-terminal half of protein H. On the albumin molecule, the binding site for protein H was found to overlap the site for protein G, another albumin- and lgGFc-binding bacterial surface protein. Aiso lgGFc-binding could be mapped with the protein H fragments and the region was found N-terminally of the C repeats. A synthetic peptide (25 amino acid residues long) based on a sequence in this region was shown to inhibit the binding of protein H to immobilized lgG or lgGFc. This sequence was not found in previously described lgGFc-binding proteins. However, two other cell surface proteins of S. pyogenes exhibited highly homologous regions. The results identify lgGFc- and albumin binding regions of protein H and further define and emphasize the convergent evolution among bacterial surface proteins interacting with human plasma proteins.  相似文献   

19.
Results from this study indicate that adult rat brain posesses guanylate cyclase activity sensitive to serotonin (5-HT) and localized in the synaptic plasma membrane. The enzyme appears to have multiple activation sites for 5-HT with specific activity maxima at the 5-HT concentrations of 5 × 10?10M and 7 × 10?8M respectively. The rates of guanosine-3′:5′-monophosphate (cyclic GMP) formation at these concentrations of 5-HT are, respectively, 170% and 307% above the endogenous or basal production rate of 2.7±0.3picomoles/minute/milligram of synaptosomal membrane protein. We have also been able to identify four distinct types (Type #1, #2, #3, and #4) of high affinity, specific binding sites for 5-HT on isolated synaptosomal membranes from rat brain. Dissociation constants of 2.6 × 10?10M, 2.5 × 10?9M, 7.0 × 10?9M, and 4.6 × 10?8M, characterize the binding of 5-HT to our sites of Type #1 through Type #4 respectively. The specific, high affinity binding was saturated at 5-HT concentrations of 5 × 10?10M for the Type #1 sites, 5 × 10?9M for our Type #2 sites, 1 × 10?8M for our Type #3 sites, and 7 × 10?8M for our Type #4 sites. The 5-HT concentrations producing saturation of our specific binding sites of Type #1 and Type #4 are virtually identical to those that elicit the two maxima of 5-HT stimulated cyclic GMP production, indicating that a membrane-bound guanylase cyclase may be closely associated with certain 5-HT receptors and/or re-uptake sites.  相似文献   

20.
Penicillin-binding protein 1Bs of Escherichia coli (Mr ca. 9 × 104) gave three protein bands with slightly different mobilities on sodium dodecylsulfate — polyacrylamide gel electrophoresis. The enzymatic activities of each of these proteins were identified after renaturation of the proteins separated by electrophoresis. Each of them had two enzymatic activities of the last steps of synthesis of peptidoglycan from lipid-linked precursor, i. e., activity of transglycosylase, which extends the glycan chain, and activity of penicillin-sensitive transpeptidase, which crosslinks glycan chains with peptide cross-bridges. Trypsin treatment of each of the three proteins resulted in formation of a doublet of penicillin-binding proteins (Mr ca. 5 × 104). The results strongly indicate that penicillin-binding protein 1Bs are bifunctional peptidoglycan synthetase proteins differing slightly in molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号