首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

3.
The synthesis of 1,3,5-13C3- and 2,4-13C2-labeled 5-O-bromobenzyl-2-deoxyribonolactones 2, precursors to 13C-enriched nucleoside phosphoramidites for solid-phase synthesis of DNA oligonucletides, is described. An equimolar combination of these two multiply labeled lactones affords a “population-labeled” mixture of isotopomers which exhibits an approximately 50-fold increase in the sensitivity of 13C-NMR compared to natural abundance measurements. The 13C-13C 2-bond and 4-bond coupling constants are reported for the lactones; all are < 2 Hz, confirming that this labeling scheme should be especially useful for NMR-relaxation measurements.  相似文献   

4.
4-Thialysine (S-(2-aminoethyl)-l-cysteine) is an analog of lysine. It has been used as an alternative substrate for lysine in enzymatic reactions. Site-directed isotopomers are often needed for elucidation of mechanism of reactions. 4-Thialysine can be synthesized by reacting cysteine with 2-bromoethylamine, an important reagent in chemical-modification rescue (CMR) of proteins. Here, we present the synthesis of 4-thia-[6-13C]lysine, one of the isotopomers of 4-thialysine, from commercially available starting material [2-13C]glycine via formation of five intermediates including 2-amino[2-13C]ethanol and 2-bromo[1-13C]ethylamine. The compounds were characterized using various spectroscopic techniques. Moreover, we discuss that our strategy would provide access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Biological activity of 4-thia-[6-13C]lysine was tested in the enzymatic reaction of lysine 5,6-aminomutase.  相似文献   

5.
[2-13C]Succinate has been used to examine the metabolic carbon flux from the Krebs cycle in rat renal proximal convoluted tubular (PCT) cells under physiological and pathophysiological conditions. Therefore, we developed a mathematical model that enabled us to determine the metabolic fluxes of the Krebs cycle. A mathematical model for the calculation of flux from [2-13C]succinate was used to determine fluxes in rat PCT cells during chronic acidosis in the presence and absence of 0.1 mM angiotensin II. The relative carbon efflux via glutamate dehydrogenase in rat renal PCT cells increases during chronic acidosis from 0.27 to 0.39, whereas this carbon flux is not affected by the presence of peptide hormone angiotensin II in the incubation medium. The fraction of intermediate 13C-labelled oxaloacetate transformed into the phosphoenolpyruvate and aspartate pools increases significantly from 0.41 to 0.57 in the case of chronic acidosis. The carbon efflux is not affected by angiotensin II. The 13C-NMR data also show that the carbon efflux through phosphoenolpyruvate carboxykinase increases from 0.35 to 0.56 in rat renal PCT cells derived from chronic acidotic animals, as well as in the presence of angiotensin II. The present results indicate that angiotensin II affects only the flux through phosphoenolcarboxykinase, whereas chronic acidosis increases the flux through phosphoenolpyruvate carboxykinase as well as the gluconeogenic flux.  相似文献   

6.
《Carbohydrate research》1986,147(2):247-264
l-(1-13C, 5-2H)Arabinose (6D) and l-(2-13C, 5-2H)arabinose (8D) have been synthesized by degradation of 2,3-O-isopropylidene-α-l-rhamnofuranose (2) to l-(4-2H)erythrose (,D), with subsequent chain elongation to 6D plus l-(1-13C, 5-2H)ribose (7D), the latter being converted into 8D. Intermediates were identified by complete assignment of the 13C chemical shifts employing carbon-carbon and carbon-deuterium coupling constants, deuteration shifts, differential isotope-shifts, and deuterium spectra. The anomeric carbon atoms of 2 and 2,3-O-isopropylidene-l-(1-2H) erythrose (4D) gave only single 13C resonances, suggesting that these two compounds exists in only one major anomeric configuration, clarifying previously reported work. The synthesis of 2,3-O-isopropylidene-l-(1-2H)rhmanitol (3D) facilitated the assignment of the signals in the 13C spectra of the nondeuterated analog. Specific deuterium-enrichment and the observed carbon-deuterium coupling (1JC,D ∼22 Hz) not only served to identify the deuterated carbon atom unambiguously in 3 but also permitted assignment of closely spaced resonances. The deuterium spectrum of 2,3-O-isopropylidene-l-(1-2H)erythrofuranose (4D) showed only a single resonance, indicating preponderance of one anomer, in accord with the observation of a single C-1 resonance in the 13C spectrum.  相似文献   

7.
G Zomer  H Wynberg  N M Drayer 《Steroids》1984,44(4):283-292
The preparation of [1,2,3,4-13C] testosterone and of [1,2,3,4-13C] estradiol by total synthesis is described. The 13C labels are introduced by alkylating intermediate 1 with [1,2,3,4-13C]l-iodo-3,3-ethylenedioxybutane (2) to obtain intermediate 10. Hydrolysis of the ketal function, cyclization, aromatization and removal of protective groups gave [1,2,3,4-13C] estradiol. Labeled testosterone was prepared by methylating intermediate 10 and by subsequent treatment with acid. The labeled steroids can be used as tracers for in vivo metabolic studies and as internal standards for the development of definitive gc-ms quantitative methods.  相似文献   

8.
9.
  • 1.1. In the present study the major metabolic pathways of glucose metabolism were determined in isolated liver cells using [2-13C]acetate and 13C magnetic resonance spectroscopy.
  • 2.2. The relative reaction rates of glucose synthesis to the TCA cycle were determined from the 13C distribution in glucose where the overall 13C enrichment of glucose was 6.41 ± 1.94% (mean ± SD; n = 6) and the mean 13C enrichment of C1, C2, C5, C6 to C3, C4 was 2.63 ± 0.30.
  • 3.3. Since the distribution of tracer in glucose is a function of the relative entry rates of pyruvate to acetyl-CoA into the oxaloacetate pool this was calculated to be 0.32 ± 0.15 and the factor for carbon exchange (1/P) between the gluconeogenic pathway and the TCA cycle was calculated to be 1.03 ± 0.20.
  • 4.4. With this carbon exchange factor and the approximated 13C enrichment of acetyl-CoA the intramitochondrial 13C enrichment of phosphoenolpyruvate was calculated and the “true” rate of hepatic gluconeogenesis from phosphoenolpyruvate estimated.
  • 5.5. Since acetate was metabolized solely in liver cells the 13C enrichment of acetyl-CoA could be approximated from that of 3-hydroxybutyrate.
  • 6.6. The carbon 13 enrichment of 3-hydroxybutyrate and phosphoenolpyruvate was 5.89 ± 0.90% and 5.96 ± 1.67%, respectively.
  • 7.7. The per cent gluconeogenesis from phosphoenolpyruvate calculated as the ratio of the 13C enrichment of glucose to that of 3-hydroxybutyrate times 1/P was 107 ± 8%.
  • 8.8. In this study the validity of assessing isotopic exchange at oxaloacetate as suggested by Katz [Katz J. (1985) Am. J. Physiol.248, R391–R399] when interpretation of the data are not obscured by pseudoketogenesis.
  • 9.9. Magnetic resonance spectroscopy provides direct information about intramolecular tracer distribution by which flux rates in major metabolic pathways are derived.
  相似文献   

10.
  • 1.1. The generation of C2- and C3-deuterated l-lactate was monitored by 13C NMR in human erythrocytes exposed to d-[1-13glucose, d-[2-13C]glucose or d-te-13C]glucose and incubated in a medium prepared in D2O.
  • 2.2. The results suggested that the deuteration of the C1 of d-fructose 6-phosphate in the phosphoglucoisomerase reaction, the deuteration of the C1 of d-glyceraldehyde-3-phosphate in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase and the deuteration of the C3 of pyruvate in the reaction catalyzed by pyruvate kinase were all lower than expected from equilibration with D2O.
  • 3.3. Moreover, about 40% of the molecules of pyruvate generated by glycolysis apparently underwent deuteration on their C3 during interconversion of the 2-keto acid and l-alanine in the reaction catalyzed by glutamate-pyruvate transaminase.
  • 4.4. The occurrence of the latter process was also documented in cells exposed to exogenous [3-13C]pyruvate.
  • 5.5. This methodological approach is proposed to provide a new tool to assess in intact cells the extent of back-and-forth interconversion of selected metabolic intermediates.
  相似文献   

11.
Double Quantum (DQ) NMR, which utilizes the magnetic dipole interaction between the (13)C atoms, was used for the complete assignment of the (13)C NMR resonances to the corresponding carbon ring positions for the monoclinic and triclinic allomorphs of methyl 4'-O-methyl-beta-D-cellobioside-(13)C(12)(1-(13)C(12)), a cellodextrin model compound of cellulose (13)C-perlabeled at the cellobiose core. The through-space interactions were used to identify the direct chemical bonds between adjacent carbon atoms in the rings. More importantly, the (13)C NMR signals of the carbon sites C1' and C4 involved in the glycosidic bond were identified. This allowed for the complete (13)C chemical shift assignment, that when combined with the X-ray crystallography data provides a complete characterization.  相似文献   

12.
Recent studies in rodent and human cerebral cortex have shown that glutamate-glutamine neurotransmitter cycling is rapid and the major pathway of neuronal glutamate repletion. The rate of the cycle remains controversial in humans, because glutamine may come either from cycling or from anaplerosis via glial pyruvate carboxylase. Most studies have determined cycling from isotopic labeling of glutamine and glutamate using a [1-(13)C]glucose tracer, which provides label through neuronal and glial pyruvate dehydrogenase or via glial pyruvate carboxylase. To measure the anaplerotic contribution, we measured (13)C incorporation into glutamate and glutamine in the occipital-parietal region of awake humans while infusing [2-(13)C]glucose, which labels the C2 and C3 positions of glutamine and glutamate exclusively via pyruvate carboxylase. Relative to [1-(13)C]glucose, [2-(13)C]glucose provided little label to C2 and C3 glutamine and glutamate. Metabolic modeling of the labeling data indicated that pyruvate carboxylase accounts for 6 +/- 4% of the rate of glutamine synthesis, or 0.02 micromol/g/min. Comparison with estimates of human brain glutamine efflux suggests that the majority of the pyruvate carboxylase flux is used for replacing glutamate lost due to glial oxidation and therefore can be considered to support neurotransmitter trafficking. These results are consistent with observations made with arterial-venous differences and radiotracer methods.  相似文献   

13.
《Carbohydrate research》1986,154(1):29-36
The KOH-catalyzed isomerization of d-[1-13C]mannose under anaerobic conditions was studied by 13C-n.m.r. spectroscopy. d-[1-13C]Glucose and d-[1-13C]fructose are generated during the reaction, as expected. In addition, however, [16-13C]glucose, [6-13C]mannose, and [6-13C]fructose are produced in small proportions, possibly via symmetrical 3,4-enediol intermediates. The involvement of the latter structures in 13C-label shifting is inferred from the observation of [1-13C]sorbose and [6-13C]sorbose in the reaction mixture.  相似文献   

14.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

15.
Horse heart cytochrome c has been carboxymethylated under various reaction conditions using [2-13C]bromoacetate. Direct analysis of reaction products using 13C nuclear magnetic resonance spectroscopy shows that the protein can be much more extensively modified than has previously been assumed. The proximity of one carboxymethylmethionine residue to the paramagnetic center of the ferric protein allows it to be distinguished from a more constant carboxymethylmethionine residue on the basis of the chemical shift of its labeled methylene group. Refolding of cytochrome c after alkylation at low pH apparently gives a different configuration of modified methionine residues within the protein compared to that produced by alkylation at neutral pH in the presence of cyanide.  相似文献   

16.
The effects of the anesthetic steroid alphaxalone and its inactive analog delta 16-alphaxalone on model phospholipid membranes were studied using 13C and 2H solid-state nuclear magnetic resonance spectroscopy. Aqueous multilamellar dispersions of dipalmitoylphosphatidylcholine (DPPC) with specific 13C and 2H labels as endogenous probes at the carbonyl and the C-7 methylene groups, respectively, of the sn-2 chain were used to study the conformational and dynamical properties of the bilayer as a function of temperature. There were no significant changes between the 13C and 2H spectra of the DPPC preparation containing the inactive steroid and that of DPPC with no drug. However, the physiologically active steroid produces significant spectral 2H and 13C changes. These changes include a reduction of the main phase transition temperature and a broadening of that transition. Alphaxalone also increases the relative number of gauche conformers in the liquid-crystalline phase of DPPC and increases the rate of axial diffusion in both the gel and liquid-crystalline phase. The thermotropic properties of the above preparations, as monitored by differential scanning calorimetry, were congruent with the spectroscopic data.  相似文献   

17.
Phenylisothiocyanate, enriched with 13C at the isothiocyanate carbon, has been synthesized and utilized as a 13C NMR probe of proteins for the first time. The reagent has been used to label the amino groups of oxidized glutathione, and the resulting 13C NMR spectrum shows a prominent thiocarbonyl peak after a single NMR scan. The reagent is also capable of differentiating amino groups on the insulin molecule with distinct peaks corresponding to the amino groups on the A and B chains of insulin. This study illustrates the potential of using a new 13C label to functionalize amino groups of proteins and to study the labeled proteins with 13C NMR.  相似文献   

18.
Several 2-(aminomethyl)-and 2-(2-aminoethyl)-pyrrolidine-3,4-diol derivatives have been assayed for their inhibitory activities towards glycosidases. Good inhibitors of alpha-mannosidases must have the (2R,3R,4S) configuration and possess 2-(benzylamino)methyl substituents. Stereomers with the (2S,3R,4S) configuration are also competitive inhibitors of alpha-mannosidases, but less potent as they share the configuration of C(1), C(2), C(3) of beta-D-mannosides rather than that of alpha-D-mannosides. Interestingly, (2S,3R,4S)-2-[2-[(4-phenyl)phenylamino]ethyl]pyrrolidine-3,4-diol (12g) inhibits several enzymes, for instance alpha-L-fucosidase from bovine epididymis (K(i)=6.5microM, competitive), alpha-galactosidase from bovine liver (K(i)=5microM, mixed) and alpha-mannosidase from jack bean (K(i)=102microM, mixed). Diamines such as (2R,3S,4R)-2-[2-(phenylamino) or 2-(benzylamino)ethyl]pyrrolidine-3,4-diol (ent-12a, ent-12b) inhibit beta-glucosidase from almonds (K(i)=13-40microM, competitive).  相似文献   

19.
Several analogues of all-trans-retinal were synthesised, containing, instead of CH3-group at C13, the following substituents: H, C[2H]3, C2H5, iso-C3H7, C4H9, C6H5 or alpha-C10H8. The compounds synthesised on coupling with bacterioopsin gave artificial chromoproteins, which retained the ability to participate in the cycle of photochemical transformations and H+-transport.  相似文献   

20.
The coupling pattern of trichothecin biosynthesized from acetate-[1,2-13C2] is in accord with previous enrichment studies. Multiple labelling was observed. Exogenous acetate has been shown to inhibit the utilization of glucose and the incorporation of radioactivity from pyruvate-[2-14C] and citrate-[1,5-14C] into the metabolites. Two pairs of 13C NMR assignments are interchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号