首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium-22 efflux was measured in multilamellar liposomes composed of egg lecithin, dicetylphosphate, and various sterols. In a parallel series of experiments a spin labelled fatty acid ester was incorporated into similar vesicles and the molecular motion of the spin label monitored by electron spin resonance spectroscopy. Spin lable mobility was used as a measure of phospholipid hydrocarbon chain motion. There was a poor correlation between the effects of these sterols on sodium permeability and their effects on the motion of the lipid chains. It is postulated that sterols alter sodium transport not only through a reduction in the motional freedom of membrane lipids, but also through changes in the partitioning of sodium between membrane and aqueous phases.  相似文献   

2.
The effect of gangliosides on membrane permeability was investigated by studying the kinetic properties of cytochrome c oxidase, the activity of which, when the enzyme is reconstituted in phospholipid vesicles, is dependent on membrane permeability to H+ and K+. The experiments indicate that three different gangliosides (GM1, DD1a, GT1b) incorporated into cytochrome c oxidase-containing phospholipid vesicles stimulate enzymic activity, in the absence of ionophores, most probably by disorganizing the bilayer lipid assembly and increasing its permeability to ions. This interpretation was confirmed by fluorescence-spectroscopy experiments in which the rate of passive leakage of carboxyfluorescein entrapped in the vesicles was measured. Cholera toxin, or its isolated B-subunit, added to GM1-containing proteoliposomes inhibited cytochrome c oxidase activity, indicating the lack of formation, under these experimental conditions, of channels freely permeable to H+ or K+.  相似文献   

3.
The chemical composition, liquid content sign and value of charge as well as structure and size of lipid vesicles are studied for the effect they exert on the liposome permeability for 22Na+ in the presence of human blood plasma. The rate of the isotope outlet from the electroneutral lecithin liposomes is determined by the size of vesicles and the quantity of phospholipid bilayers in their membrane. The presence either of a negative or a positive charge on the surface of the liposome membrane has no essential effect on the outlet rate of the radioactive marker. Introduction of different amounts of cholesterol or sphingomyelin into the liposome composition decreases considerably the lipid vesicle permeability and an increase in the liquid content of their membranes due to the temperature elevation is accompanied by a sharp rise in the isotope outlet rate. A conclusion is drawn on the possibility to control the outlet rate of the liposome content in the presence of blood plasma.  相似文献   

4.
Using large (5-10 microns) vesicles formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera, and digital image processor, we examined the effects of membrane proteins on phospholipid domain formation. In vesicles composed of phosphatidic acid and phosphatidylcholine, incubation with cytochrome c induced the reorganization of phospholipids into large phosphatidic acid-enriched domains with the exclusion of phosphatidylcholine. Cytochrome c binding was demonstrated to be highest in the phosphatidic acid-enriched domain of the vesicle using the absorbance of the heme moiety for visualization. Both binding of cytochrome c and phospholipid reorganization were blocked by pretreatment of the vesicles with 0.1 M NaCl. The pore forming peptide gramicidin was examined for the effects of an integral protein on domain formation. Initially, gramicidin distributed randomly within the vesicle and showed no phospholipid specificity. Phosphatidic acid domain formation in the presence of 2.0 mM CaCl2 or 100 microM cytochrome c was not affected by the presence of 5 mol % gramicidin within the vesicles. In both cases, gramicidin was preferentially excluded from the phosphatidic acid-enriched domain and became associated with phosphatidylcholine-enriched areas of the vesicle. Thus, cytochrome c caused a major reorganization of both the phospholipids and the proteins in the bilayer.  相似文献   

5.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

6.
1. The intermediate structures formed during dialysis of mixtures of cholate, phospholipid and cytochrome c oxidase were analysed by gel chromatography and electron microscopy. Measurements of trapped phosphate and the degree of respiratory control were used to assess the integrity of the vesicular structures formed. Protein orientation in the bilayer was monitored by the accessibility of cytochrome c to cytochrome c oxidase. 2. The results indicate that proteoliposome formation by the detergent-dialysis procedure takes place in three distinct stages. In the first stage, cholate/phospholipid and cholate/phospholipid/protein micelles coexist in solution and grow in size as the detergent is slowly removed. At a detergent/phospholipid molar ratio of about 0.2, micelle fusion results in the formation of large bilayer aggregates permeable to both phosphate and cytochrome c. It is at this stage that cytochrome c oxidase is incorporated into the bilayer. In the final stage of dialysis the bilayer sheets fragment into small unilamellar vesicles. 3. The orientation of membrane protein in the final vesicles appears to be determined by the effect of protein conformation on the initial curvature of the bilayer sheets during the fragmentation process.  相似文献   

7.
Myelin membranes purified from bovine brain are shown to form membrane vesicles when incubated in hypotonic buffer. Following restoration of isotonicity a resealing of the membrane occurs as judged by a significant decrease in 22Na+ permeability. Electron spin resonance measurements using stearic acid spin label I indicate a small decrease in membrane fluidity with increasing ionic strength between 50 and 80 mM NaCl. Iodination of myelin membrane vesicles by lactoperoxidase shows a four-fold increase in the amount of iodine incorporation into the myeline basic protein from 0--150 mM NaCl, while the iodination of the proteolipid protein remains essentially unaffected by the change in ionic strength. This dependence of the iodination of the myelin basic protein on the ionic strength can be explained by the electrostatic interactions of this protein with membrane lipids. In view of striking analogies with studies on model membranes correlating protein binding with membrane permeability changes, we suggest a similar structure-function relationship for the myelin basic protein.  相似文献   

8.
A purified protein fraction from the proteolipids of human brain myelin was recombined with different lipids either in aqueous buffer or in a chloroform-methanol-water (10:5:1, v/v/v) mixture. It was found that under both conditions it binds strongly to phospholipids irrespective of surface charge, the presence of cholesterol or double bonds on the fatty acyl chains. The buoyant density of the resulting lipoprotein membranes is intermediate to that of pure lipids, and proteins. The lipoproteins formed by either of these methods were observed by either freeze-fracture or negative stain electron-microscopy. The overall morphology was similar to that of pure phospholipids, showing large closed multilamellar vesicles. The presence of the protein was detected by the appearance of intramembrane particles in freeze-fracture. The addition of the N-2 protein generally increases the permeability vesicles to 22-Na-+ by 2-3 orders of magnitude depending on the concentration. The presence of calcium in the aqueous medium further increases the Na-+ efflux through negatively charged vesicles. Changes in lipid composition, surface charge, cholesterol, etc., have no appreciable influence on the effect of the protein. Differential scanning calorimetry indicates that the presence of small amounts of N-2 have no effect on the lipid phase transition from solid to liquid crystalline. As the amount of protein bound to the phospholipid increases, the enthalpy of the transition decreases, the main endothermic peak broadens, but there is no change on the midpoint temperature. Membranes containing 50% by weight of protein still show a transition with an enthalpy approximately one half that of the original lipid.  相似文献   

9.
《Phytochemistry》1987,26(12):3145-3150
The plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) affect the properties of phospholipid bilayers differently. IAA enhances permeability of bilayers composed of phosphatidylcholine to the non-electrolyte erythritol while ABA requires an additional phospholipid in the membrane to produce substantial enhancement. Similar conclusions are obtained by measuring hormone-induced permeability to chloride ions; IAA is effective with single component phosphatidylcholine membranes while ABA requires a second phospholipid. Erythritol permeability is shown to be pH dependent for both hormones. Although IAA is more effective at increasing erythritol permeability at pH 4 than at pH 7, both dissociated and undissociated IAA affect the process. In comparison ABA is almost totally ineffective in the dissociated form (at pH 7). Spin label electron spin resonance measurements demonstrated that neither hormone substantially disrupts acyl chain mobility within the membrane, indicating that the mechanism of permeability enhancement is not a general non-specific pertubation of membrane ordering and fluidity. Both hormones can also effect the stability of small unilamellar (sonicated) vesicles. Phosphatidylcholine vesicles are relatively stable and do not rapidly aggregate with either ABA or IAA. However, when phosphatidylethanolamine is incorporated as a minor component (10 mol%) into phosphatidylcholine vesicles ABA causes rapid aggregation while IAA has no effect. These experiments indicate that the two hormones may exhibit completely different behaviour on membranes without the requirement for specific proteinaceous receptors.  相似文献   

10.
Calorimetric studies of cytochrome oxidase-phospholipid interactions   总被引:1,自引:0,他引:1  
Thermotropic phase transitions in phospholipid vesicles reconstituted with mitochondrial cytochrome oxidase (EC 1.9.3.1) were studied using differential scanning calorimetry. Both dimyristoylphosphatidylcholine (DMPC) and mixtures of DMPC and cardiolipin were used at different lipid-to-protein ratios. The incorporated protein reduces the energy absorbed during phase transitions of DMPC vesicles, and causes a small decrease in the transition temperature (tm). delta H depends on the amount of protein in the vesicles. This dependence indicates that about 72 DMPC molecules are influenced per cytochrome alpha alpha 3 monomer. The transition parameters remain unaffected by changes in ionic strength or by reduction of the enzyme. Incorporation of cytochrome oxidase depleted of subunit III into DMPC liposomes resulted in a larger decrease of tm, but the amount of perturbed phospholipids remains similar to that in the case of the intact enzyme. Incorporation of cytochrome oxidase into DMPC/cardiolipin vesicles counteracts the effect of cardiolipin in decreasing the enthalpy of the DMPC transition. Thus cytochrome oxidase segregates the phospholipids by attracting cardiolipin from the bulk lipid. Cytochrome c does not significantly affect this apparent cardiolipin 'shell' around membranous cytochrome oxidase.  相似文献   

11.
According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5. Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very sensitive to the binding of proteins, and so is a useful method to study lipid-protein interactions. The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of bilayer, only due to the interaction of the hydrophobic peptide tail. Interaction of dipalmitoly phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 degrees C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected. Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature.  相似文献   

12.
Cytochrome P-450scc, which catalyses the conversion of cholesterol to pregnenolone in steroidogenic tissues, can be incorporated into artificial phospholipid vesicles and cholesterol binding to the cytochrome is affected by the composition of the vesicles. We have purified the phospholipids from the inner mitochondrial membrane fraction of the bovine corpus luteum where the cytochrome is located. The composition in mol % was 49% phosphatidylcholine, 34% phosphatidylethanolamine, 8.7% cardiolipin, 6.4% lysophosphatidylethanolamine and 1.5% phosphatidylinositol. The ratio of cholesterol to phospholipid (mol/mol) in the inner membrane fraction was 0.14 to 1. The Km for cholesterol of purified luteal cytochrome P-450scc incorporated into vesicles prepared from the total inner mitochondrial membrane phospholipids was 0.063 mol of cholesterol per mol of phospholipid. Removal of the cardiolipin component of the inner mitochondrial membrane phospholipids prior to preparation of vesicles caused a four fold increase in the Kd of cytochrome P-450 for cholesterol and a two fold increase in Km. The data suggests that in the inner mitochondrial membrane of the bovine corpus luteum the cholesterol concentration is less than saturating for cytochrome P-450scc.  相似文献   

13.
E M el-Mashak  T Y Tsong 《Biochemistry》1985,24(12):2884-2888
Temperature and electric field are known to alter the permeability of the bilayer membrane in phospholipid vesicles. A study of cation selectivity of these membrane pores is reported for multilamellar liposomes (MLV) and unilamellar large vesicles (ULV, 95 +/- 5 nm diameter) of dipalmitoylphosphatidylcholine (DPPC). The permeability of ULV to Rb+ was 1.0 X 10(-6) micrograms/s at 22 degrees C and increased to 1.1 X 10(-5) micrograms/s at the gel to liquid-crystalline transition temperature (Tm) of the bilayer, at 42 degrees C. The permeability of ULV to Rb+ continued to increase beyond the Tm and reached 1.0 X 10(-4) micrograms/s at 56 degrees C, a 100-fold increase over the permeability at 22 degrees C. In contrast, the permeability of ULV to Na+ showed a local maximum of 6.0 X 10(-6) micrograms/s at 42 degrees C and decreased at temperatures higher or lower than the Tm. For MLV, the permeability to both Rb+ and Na+ peaked dramatically at the phase transition temperature, 42 degrees C, and subsided at lower and higher temperatures. When ULV were exposed to an electric field, the permeability to Rb+, Na+, and sucrose surged at a field strength of 30 kV/cm; 30 kV/cm can induce a transmembrane potential of 210 mV. In ULV, the electrically perforated lipid bilayer exhibited selectivity for Rb+ over Na+ only at a narrow electric field range, between 31 and 33 kV/cm. For MLV, no well-defined breakdown voltage was recorded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of a series of sterols on molecular order and motion in bilayers formed from egg lecithin and dicetylphosphate were examined and correlations between order and data on permeability to 22Na+ were sought. Electron spin resonance spectra were observed for probes intercalated both in multilamellar dispersions where the effects of motion and orientation are difficult to separate, and in planar multibilayers where the degree of molecular order may be measured even in the presence of slow probe motion. It was concluded from the planar multi-bilayer data that sterols which increase the degree of ordering of lipid molecules decrease 22Na+ permeability, and that sterols which have the opposite effect on order increase permeability. All the sterols tested lead to decreased rates of motion of the probes. This effect obscures the correlation between order and permeability using data from dispersions.  相似文献   

15.
Discontinuous sucrose gradient ultracentrifugation was used to separate liposomes containing Rhodobacter sphaeroides cytochrome c oxidase (pCOV) from liposomes devoid of the enzyme, and the biophysical and biochemical properties of pCOV were compared to unpurified liposomes containing cytochrome c oxidase (COV). Isolated and purified R. sphaeroides cytochrome c oxidase (COX) was reconstituted into asolectin phospholipid vesicles by cholate dialysis, and this preparation was purified further on a discontinuous sucrose gradient to isolate only those vesicles which contained the enzyme (pCOV). After centrifugation at 300,000g for 22h, 80% of the enzyme recovered was in a single band. The number of COX molecules per pCOV liposome was estimated by measuring the visible absorbance spectrum of cytochrome c oxidase (for heme aa(3)) and inorganic phosphate concentration (for phospholipid). The number of COX molecules incorporated per pCOV was estimated to be approximately one (0.72+/-0.19-1.09+/-0.28). The pCOV exhibited similar physical properties as COV; respiratory control ratios (indicators of endogenous proton permeability) and maximum enzymatic turnover number at pH 7.4 were comparable (6.0+/-1.3 and 535+/-130s(-1)). Furthermore, proton pumping activities of the pCOV were at least 70% of COV, indicating that discontinuous sucrose gradient centrifugation is a useful technique for functional experiments in R. sphaeroides cytochrome c oxidase. Our results suggest that the monomeric form of R. sphaeroides COX when reconstituted into a phospholipid bilayer is completely functionally active in its ability to perform electron transfer and proton pumping activities of the enzyme.  相似文献   

16.
Polycation-induced fusion of negatively-charged vesicles   总被引:3,自引:0,他引:3  
Sonicated vesicles of 20-50 nm in diameter consisting of neutral phospholipids and a variety of acidic phospholipids were interacted with polylysine, cytochrome c, Ca2+ and Mg2+. The addition of polycations caused massive aggregation accompanied by an increase of membrane permeability as determined by leakage of fluorescent dye. Aggregation was followed by fusion of the vesicles into structures that in some cases exceeded 1 micron in diameter. Polylysine induced aggregation and appreciable fusion at charge ratios (polylysine/phospholipid) of 0.5-2, while divalent cations did so only at charge ratios (cation/phospholipid) greater than 10. Aggregation and fusion induced by polylysine were dependent also on the size of the polycation, i.e., the longer the molecule the less needed to induce similar aggregation. It appears that, due to the concentration of charges on a single molecule, polylysine is at least an order of magnitude more effective than divalent cations at inducing fusion of membranes. Cytochrome c induced fusion of similar vesicles at moderately acidic pH (pH 4.2).  相似文献   

17.
The broadening of spin-label absorption lines resulting from spin-exchange reactions that occur during collision with paramagnetic Ni2+ is diminished when Ni2+ binds to phospholipid vesicles. Subsequent addition of non-paramagnetic ions that compete for binding sites releases Ni2+ into solution and restores the line-broadening. The concentrations of various ions required to achieve this effect was used to order the ions with respect to their binding to vesicles containing phosphatidylethanolamine and phosphatidylglycerol. The relative strengths of binding for those ions studied were: Ca2+ > Mg2+ > Zn2+ > Sr2+ > Ba2+. The spin-broadening assay was also used to study the effects of two proteins on the availability of Ni2+-binding sites on the vesicles. Ribonuclease, which is thought to associate electrostatically as an extrinsic protein on the surface of vesicles, completely blocked the Ni2+-binding sites at comparatively low protein concentrations. Quantitative considerations of these data suggest the possibility that Ni2+ may bind preferenetially to phosphatidylglycerol, and that these binding sites are aggregated in the ribonuclease-containing vesicles. In contract to ribonuclease, cytochrome c does not block Ni2+-bindings sites on the phospholipid vesicles, but rather contains sites of its own that bind Ni2+, both when the protein is in solution and when it is associated with the vesicles. These results are consistent with other studies which suggest that cytochrome c becomes partially embedded in membrane bilayers and associates with phospholipid molecules through hydrophobic interactions.  相似文献   

18.
Glycophorin was incorporated into large unilamellar dioleoylphosphatidylcholine vesicles by either a detergent dialysis method using octylglucoside or a method avoiding the use of detergents. The vesicles were characterized and the permeability properties and transbilayer movement of lipids in both vesicles were investigated as a function of the protein concentration and were compared to protein-free vesicles. An insight in the permeability properties of the vesicles was obtained by monitoring the ratio potassium (permeant): dextran (impermeant) trap immediately after separation of the vesicles from the external medium. Glycophorin incorporated without the use of detergents in 1:300 protein:lipid molar ratio induces a high potassium permeability for the majority of the vesicles as judged from the low potassium trap (K+:dextran trap = 0.21). In contrast, the vesicles in which glycophorin is incorporated via the octylglucoside method (1:500 protein:lipid molar ratio) are much less permeable to potassium (K+:dextran trap = 0.67 and t12 of potassium efflux at 22°C is 7.5 h.). The relationship between protein-induced bilayer permeability and lipid transbilayer movement in both vesicle preparations is discussed. Addition of wheat-germ agglutinin to glycophorin-containing vesicles comprised of dioleoylphosphatidylcholine and total erythrocyte lipids caused no or just a small effect (less than 20% release of potassium) on the potassium permeability of these vesicles. Also, addition of lectin to dioleoylphosphatidylethanolamine-glycophorin bilayer vesicles in a 25:1 lipid:glycophorin molar ratio had no effect on the permeability characteristics of the vesicles. In contrast, addition of wheat-germ agglutinin to bilayer vesicles made of dioleoylphosphatidylethanolamine and glycophorin in a 200:1 molar ratio resulted in a release of 74% of the enclosed potassium by triggering a bilayer to hexagonal (HII) phase transition. The role of protein aggregation and the formation of defects in the lipid bilayer on membrane permeability and lipid transbilayer movement is discussed.  相似文献   

19.
Pretranstional phenomena in phospholipid/water multilayers.   总被引:3,自引:3,他引:0       下载免费PDF全文
We have measured the water order in monodomain phospholipid samples using 2H nuclear magnetic resonance (NMR) and analyzed the splittings in terms of critical exponents. Our data and the model developed to interpret them in terms of fluctuations provide an explanation of the puzzling sharp reduction of water order near the chain-ordering phase transition. The temperature range of the fluctuations is approximately the same as that observed for increased 22Na+ efflux from phospholipid vesicles.  相似文献   

20.
Cytochrome oxidase, an enzyme containing six different subunits, has been shown to span the inner mitochrondrial membrane. The arrangement of the subunits within the membrane is unknown. Wh have specifically labeled the 25 000 molecular weight subunit with a spin-label derivative of N-ethylmaleimide, 3-maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (NEM-SL(5)). NEM-SL(5)-lebeled cytochrome oxidase can be incorporated into phospholipid membranes to form coupled vesicles of the Hinkle, Kim & Racker ((1972) Jriol. Chem; 247, 1338-1399) type. The resonance spectrum of NEM-SL(5) is similar in both soluble and vesicular cytochrome oxidase. Since ascorbate has been shown to reduce only spin label that is exposed to the exterior surface of a closed vesicle, we have used ascorbate to determine the NEM-SL(5)-binding site in the coupled vesicles; NEM-SL(5)-labeled cytochrome oxidase vesicles are reduced by 10 mM ascorbate with tau 1/2 of 1 min at 22 degrees C; The rate of reduction is relatively independent of temperature. We conclude that (1) cytochrome oxidase is unidirectionally or preferentially oriented in the vesicle membrane, and (2) the NEM-SL(5)-binding site on the 25 000 molecular weight subunit is exposed to the external aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号