首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyglutamine domains are excellent substrates for tissue transglutaminase resulting in the formation of cross-links with polypeptides containing lysyl residues. This finding suggests that tissue transglutaminase may play a role in the pathology of neurodegenerative diseases associated with polyglutamine expansion. The glycolytic enzyme GAPDH previously was shown to tightly bind several proteins involved in such diseases. The present study confirms that GAPDH is an in vitro lysyl donor substrate of tissue transglutaminase. A dansylated glutamine-containing peptide was used as probe for labeling the amino-donor sites. SDS gel electrophoresis of a time-course reaction mixture revealed the presence of both fluorescent GAPDH monomers and high molecular weight polymers. Western blot analysis performed using antitransglutaminase antibodies reveals that tissue transglutaminase takes part in the formation of heteropolymers. The reactive amino-donor sites were identified using mass spectrometry. Here, we report that of the 26 lysines present in GAPDH, K191, K268, and K331 were the only amino-donor residues modified by tissue transglutaminase.  相似文献   

2.
We report here the purification of a functionally active recombinant glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Candida albicans. The GAPDH protein encoded by the TDH1 gene was obtained as a glutathione S-transferase fusion protein by expression in the vector pGEX-4T-3, and purified by affinity chromatography and thrombin digestion. The purified protein displays GAPDH enzymatic activity (42 micromol NADH min(-1) mg(-1)) as well as the laminin and fibronectin binding activities previously described. In addition, the recombinant GAPDH is covalently modified by NAD linkage; this modification is stimulated by nitric oxide and probably involves a sulfhydryl group (cysteine) residue since it is inhibited by Hg(2+) and cysteine.  相似文献   

3.
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from the extremely halophilic archaebacterium Haloarcula vallismortis has been purified in a four step procedure to electrophoretic homogeneity. The enzyme is a tetramer with a relative molecular mass of 160000. It is strictly NAD+-dependent and exhibits its highest activity in 2 mol/l KCl at 45°C. Amino acid analysis and isoelectric focusing indicate an excess of acidic amino acids. Two parts of the primary sequence are reported. These peptides have been compared with glyceraldehyde 3-phosphate dehydrogenases from other archaebacteria, eubacteria and eucaryotes. The peptides show a high grade of similarity to glyceraldehyde 3-phosphate dehydrogenase from eucaryotes.Abbreviations BCA bicinchoninic acid - CTAB cetyltrimethyl ammonium bromide - DTE dithioerythritol - DTT dithiothreitol - GAP glyccraldehyde 3-phosphate - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

4.
The interaction of glyceraldehyde 3-phosphate dehydrogenase with microtubules has been studied by measurement of the amount of enzyme which co-assembles with in vitro reconstituted microtubules. The binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules is a saturable process; the maximum binding capacity is about 0.1 mole of enzyme bound per mole of assembled tubulin. Half saturation of microtubule binding sites is obtained at a concentration of glyceraldehyde 3-phosphate dehydrogenase of about 0.5 µM Glyceraldehyde 3-phosphate dehydrogenase (between 0.1 and 2 µM) induces a concentration-dependent increase a) in the turbidity of the microtubule suspension without alteration of the net amount of polymer formed and b) in the amount of microtubule protein polymers after cold microtubule disassembly. There is a linear relationship between the intensity of the glyceraldehyde 3-phosphate dehydrogenase-induced effects and the amount of microtubule-bound enzyme. The specificity of the association of glyceraldehyde 3-phosphate dehydrogenase to microtubules has been documented by copolymerization experiments. Assembly-disassembly cycles of purified microtubules in the presence of a crude liver soluble fraction results in the selective extraction of a protein with an apparent molecular weight of 35 000 identified as the monomer of glyceraldehyde 3-phosphate dehydrogenase by peptide mapping and immunoblotting.In conclusion, microtubules possess a limited number of binding sites for glyceraldehyde 3-phosphate dehydrogenase. The binding of the glycolytic enzyme to microtubules shows a considerable specificity and is associated with alterations of assembly and disassembly characteristics of microtubules.Abbreviations Mes 2(N-morpholinoethane) sulfonic acid - EGTA ethylene glycol bis (-aminoethyl-ester)N,N,N,N tetraacetic acid - EDTA thylene diamine tetraacetic acid  相似文献   

5.
AIM:To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase(GAPDH),and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS:We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters(diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching(FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding.RESULTS:Using MALDI-TOF analysis,we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94,S98,and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH,we demonstrated accumulation of phospho-T99-GAPDH inthe nuclear fractions of A549,HCT116,and SW48 cancer cel s after cytotoxic stress. We performed site-mutagenesis,and estimated enzymatic properties,intranuclear distribution,and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+(Km = 741 ± 257 μmol/L in T99 I vs 57 ± 11.1 μmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP(fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION:Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners.  相似文献   

6.
Spinach (Spinacia oleracea L.) chloroplast NAD(P)-dependent glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) was purified. The association state of the protein was monitored by fast protein liquid chromatography-Superose 12 gel filtration. Protein chromatographed in the presence of NADP+ and dithiothreitol consisted of highly NADPH-active protomers of 160 kDa; otherwise, it always consisted of a 600-kDa oligomer (regulatory form) favoured by the addition of NAD+ in buffers and with low NADPH-dependent activity (ratio of activities with NADPH versus NADH of 0.2–0.4). Glycerate 1,3-bisphosphate (BPGA) was prepared enzymatically using rabbit-muscle NAD-GAPDH, and purified. Among known modulators of spinach NAD(P)-GAPDH, BPGA is the most effective on a molar basis in stimulating NADPH-activity of dark chloroplast extracts and purified NAD(P)-GAPDH (activation constant, K a= 12 M). It also causes the enzyme to dissociate into 160-kDa protomers. The K m of BPGA both with NADPH or NADH as coenzyme is 4–7 M. NAD+ and NADH are inhibitory to the activation process induced by BPGA. This compound, together with NADP(H) and ATP belongs to a group of substrate-modifiers of the NADPH-activity and conformational state of spinach NAD(P)-GAPDH, all characterized by K a values three- to tenfold higher than the K m. Since NADP(H) is largely converted to NAD(H) in darkened chloroplasts Heineke et al. 1991, Plant Physiol. 95, 1131–1137, it is proposed that NAD+ promotes NAD(P)-GAPDH association into a regulatory conformer with low NADPH-activity during dark deactivation. The process is reversed in the light by BPGA and other substrate-modifiers whose concentration increases during photosynthesis, in addition to reduced thioredoxin.Abbreviations BPGA glycerate 1,3-bisphosphate - Chl chlorophyll - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - 3-PGA glyerate 3-phosphate - PGK phosphoglycerate kinase - Prt protein - Tricine N-tris (hydroxymethyl) methyl-glycine This work was supported by grants from the Ministero dell'Università e della Ricerca Scientifica e Technologica in years 1990–1991. We are grateful to Dr. G. Branlant (Laboratoire d'Enzymologie et de Génie Génétique, Vandoeuvre les Nancy, France) for introducing us to the BPGA purification procedure.  相似文献   

7.
球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析   总被引:9,自引:0,他引:9  
刘志华  杨谦 《微生物学报》2005,45(6):885-889
用粗糙脉孢菌(Neurospora crassa,XP_327967)和菜豆炭疽病菌(Colletotrichum lindemuthianu,P35143)的甘油醛_3_磷酸脱氢酶基因(Glyceraldehyde 3_phosphatedehydrogenase,GAPDH)氨基酸序列对球毛壳菌(Chaetomium globosum)菌丝ESTs序列本地数据库进行tBlastn检索,获得了球毛壳菌GAPDH全长cDNA序列。该序列长1240bp,开放阅读框1014bp,编码337个氨基酸组成的多肽,蛋白分子量为36.1kD。用PCR方法克隆了该基因的DNA序列,序列长为1556bp,由2个内含子和3个外显子组成。BlastP同源性分析表明该基因与鹅掌柄孢壳(Podosporaanserine)同源性最高为95%;与米曲霉(Aspergillusoryzae)同源性最低为87%。GAPDH酵母转化子生物功能分析表明转化子对Na2CO3和高温有高的耐受性,证明GAPDH为抗胁迫基因。该基因的cDNA序列、DNA序列及推测的氨基酸序列在GenBank登录(登录号分别为AY522719,AY593253,AAS01412)。  相似文献   

8.
The glyceraldehyde-3-phosphate dehydrogenase gene (GPD) of the sophorolipid producing yeast Candida bombicola was isolated using degenerated PCR and genome walking. The obtained 3,740 bp contain the 1,008 bases of the coding sequence and 1,613 and 783 bp of the upstream and downstream regions, respectively. The corresponding protein shows high homology to the other known GPD genes and is 74% identical to the gyceraldehyde-3-phosphate dehydrogenase of Yarrowia lipolytica. The particular interest in the C. bombicola GPD gene sequence originates from the potential use of its promoter for high and constitutive expression of homologous and heterologous genes. Southern blot analysis did not give any indication for the presence of multiple GPD genes and it can therefore be expected that the promoter can be used for efficient and high expression. This hypothesis was further confirmed by the biased codon usage in the GPD gene. GDP promoter fragments of different lengths were used to construct hygromycin resistance cassettes. The constructs were used for the transformation of C. bombicola and all of them, even the ones with only 190 bp of the GPD promoter, were able to render the cells resistant to hygromycin. The efficacy of a short GPD promoter can be a convenient characteristic for the construction of compact expression cassettes or vectors for C. bombicola. The GenBank accession number of the sequence described in this article is EU315245.  相似文献   

9.
We have previously described the presence of an enzymatically active form of glyceraldehyde 3-phosphate-dehydrogenase (GAPDH) in the cell surface of Candida albicans ATCC 26555 which is also a fibronectin and laminin binding protein. Immunohistochemical analysis of tissue sections from patients with disseminated candidiasis with a polyclonal antiserum to GAPDH from C. albicans (PAb anti-CA-GAPDH) revealed that the enzyme is expressed at the surface of fungal cells in infected tissues. The same PAb detected the presence of GAPDH species, with a molecular mass of approximately 33 kDa, in cell wall extracts obtained from clinical isolates of the fungus. These cell surface-bound GAPDH moieties exhibited a dose-dependent dehydrogenase activity. These results indicate that this cell surface-bound GAPDH plays a role during infection probably contributing to the attachment of fungal cells to host tissues.  相似文献   

10.
Glyceraldehyde 3-phosphate dehydrogenase is a tetramer of four chemically identical subunits which requires the cofactor nicotinamide adenine dinucleotide (NAD) for activity. The structure of the holo-enzyme from Bacillus stearothermophilus has recently been refined using X-ray data to 2.4 A resolution. This has facilitated the structure determination of both the apo-enzyme and the enzyme with one molecule of NAD bound to the tetramer. These structures have been refined at 4 A resolution using the constrained-restrained parameter structure factor least-squares refinement program CORELS. When combined with individual atomic temperature factors from the holo-enzyme, these refined models give crystallographic R factors of 30.2% and 30.4%, respectively, for data to 3 A resolution. The apo-enzyme has 222 molecular symmetry, and the subunit structure is related to that of the holo-enzyme by an approximate rigid-body rotation of the coenzyme binding domain by 4.3 degrees with respect to the catalytic domains, which form the core of the tetramer. The effect of this rotation is to shield the coenzyme and active site from solvent in the holo-enzyme. In addition to the rigid-body rotation, there is a rearrangement of several residues involved in NAD binding. The structure of the 1 NAD enzyme is asymmetric. The subunit which contains the bound NAD adopts a conformation very similar to that of a holo-enzyme subunit, while the other three unliganded subunits are very similar to the apo-enzyme conformation. This result provides unambiguous evidence for ligand-induced sequential conformational changes in B. stearothermophilus glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

11.
The mechanism of inhalation anesthesia remains to be fully elucidated. While certain neuronal membrane proteins are considered sites of action, cytosolic proteins may also be targets. We hypothesize that inhaled anesthetics may act via glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which has recently been shown to participate in neuronal inhibition. We examined the effects of sevoflurane, a halogenated ether anesthetic, on the catalytic and fluorescence properties of GAPDH. Initial rates of oxidoreductase activity decreased approximately 30% at saturating levels of sevoflurane. NADH-stimulated oxidoreductase activity (25 μM NADH; 0.8 mM NAD+) increased with sevoflurane. Sevoflurane quenched tryptophan fluorescence emission and increased polarization. Additionally, sevoflurane increased the susceptibility of GAPDH to thermal denaturation suggesting an effect on conformation. Our findings warrant further research on sevoflurane's effect on GAPDH and indicate that this approach may lead to delineation of a novel contribution to the mechanism of anesthesia.  相似文献   

12.
Chloroplasts isolated from spinach (Spinacia oleracea L.) leaves and green sweet-pepper (Capsicum annuum L. var. grossum (L.) Sendt.) fruits contain NADP-dependent malate dehydrogenase (MDH; EC 1.1.1.82) and the bispecific NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13). The NADP-dependent MDH and GAPDH are activated in the light, and inactive in the dark. We found that chloroplasts possess additional NAD-dependent MDH activity which is, like the NAD-dependent GAPDH activity, not influenced by light. In heterotrophic chromoplasts from red sweet-pepper fruits, the NADP-dependent MDH and the NAD(P)-GAPDH isoenzymes disappear during the developmental transition and only NAD-specific isoforms are found. Spinach chloroplasts contain both NAD/H and NADP/H at significant concentrations. Measurements of the pyridine dinucleotide redox states, performed under dark and various light conditions, indicate that NAD(H) is not involved in electron flow in the light. To analyze the contribution of NAD(H)-dependent reactions during dark metabolism, plastids from spinach leaves or green and red sweet-pepper fruits were incubated with dihydroxyacetone phosphate (DHAP). Exogenously added DHAP was oxidized into 3-phosphoglycerate by all types of plastids only in the presence of oxaloacetate, but not with nitrite or in the absence of added electron acceptors. We conclude that the NAD-dependent activity of GAPDH is essential in the dark to produce the ATP required for starch metabolism; excess electrons produced during triose-phosphate oxidation can selectively be used by NAD-MDH to form malate. Thus NADPH produced independently in the oxidative pentose-phosphate pathway will remain available for reductive processes inside the plastids. Received: 2 July 1997 / Accepted: 20 October 1997  相似文献   

13.
In broken spinach chloroplasts the total amount of thiol groups is about 3.7 mol mg-1 chlorophyll. Two thirds are represented by the masked form (which is only titratable after unfolding of the protein). Of the free groups, those reacting with NBD·Cl (1.2–2.0 mol mg-1 chlorophyll) seem to be undergoing oxidation more readily than those reacting with DTNB (1.0 mol mg-1 chlorophyll). SO2 application causes a maximal increase of 25% in free thiols, and doubles the amount of the masked thiols. The light triggered increase in SH, which starts at an elevated level, runs parallel to that of the controls. SO2 application of 1.8 mg m-3 (=28 nmol l-1) for 1 h does not affect the dark level of NADP-GPD but enhances the light modulation by increasing the ratio of activation. This enhancement is explained by an increase in masked thiol groups during the preceding fumigation period.Abbreviations DTNB 5,5 dithiobis-2-nitrobenzene-2-oxa-1,3 diazole - NBD·Cl 7-chloro-4-nitrobenzene-2-oxa-1,3 diazole - PCMB p-chloromercuribenzoate - SDS sodium dodecylsulfate - NADP-GPD NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2[N-Morpholino]ethanesulfonic acid - PGA 3-phosphoglyceric acid  相似文献   

14.
Rice cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is composed of two subunits of different molecular weights. Cytosolic GAPDH activity and protein both decreased immediately after transfer of 48-h rice seedlings to anaerobic conditions. Subsequent increase in activity and protein was accompanied by a change in isoenzyme profile and was preceded by an increase in steady-state messenger levels. One and two-dimensional electrophoretic analyses of in vivo and in vitro labeled GAPDH suggested that the change in isoenzyme profile under anaerobic conditions is due to preferential synthesis of one of the two GAPDH subunits caused by a specific increase in its mRNA.  相似文献   

15.
16.
17.
Compounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents.  相似文献   

18.
19.
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was purified 386 fold to apparent homogeneity from the thermophilic cyanobacteriumSynechococcus sp. grown at optimum light intensities in batch cultures. The molecular mass of the tetrameric form of the enzyme was 160 kDa as determined by gel filtration and sucrose gradient centrifugation in a phosphate buffer containing DTT. The pH optimum for the oxidation of NADPH was broad (6–8) and the enzyme had a pI of 4.5. The turnover number was 36,000 min–1 at 40° C. The activation energy was 12.4 Kcal for t>29° C and 20.6 Kcal for t<29° C. The specific absorption coefficient, A 280 mm 1% 1cm of the pure enzyme in phosphate buffer at pH 6.8 was 15.2.By SDS gel electrophoresis molecular masses of 78 kDa and 39 kDa were found, indicating that the purified enzyme is a tetramer, probably a homotetramer.When Tris was used as buffer in the homogenization and phosphate and DTT were omitted, a high molecular form with a molecular mass above 500 kDa was found. This form was less active than the purified tetrameric form. Acetone and other organic solvents stimulated the native enzyme several fold.  相似文献   

20.
The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of the hyperthermophilic Archaeum Thermoproteus tenax is a member of the superfamily of aldehyde dehydrogenases (ALDH). GAPN catalyses the irreversible oxidation of glyceraldehyde 3-phosphate (GAP) to 3-phosphoglycerate in the modified glycolytic pathway of this organism. In contrast to other members of the ALDH superfamily, GAPN from T.tenax (Tt-GAPN) is regulated by a number of intermediates and metabolites. In the NAD-dependent oxidation of GAP, glucose 1-phosphate, fructose 6-phosphate, AMP and ADP increase the affinity for the cosubstrate, whereas ATP, NADP, NADPH and NADH decrease it leaving, however, the catalytic rate virtually unaltered. As we show here, the enzyme also uses NADP as a cosubstrate, displaying, however, unusual discontinuous saturation kinetics indicating different cosubstrate affinities and/or reactivities of the four active sites of the protein tetramer caused by cooperative effects. Furthermore, in the NADP-dependent reaction the presence of activators decreases the overall S0.5 and increases Vmax by a factor of 3. To explore the structural basis for the different effects of both pyridine nucleotides we solved the crystal structure of Tt-GAPN in complex with NAD at 2.2 A resolution and compared it to the binary Tt-GAPN-NADPH structure. Although both pyridine nucleotides show a similar binding mode, NADPH appears to be more tightly bound to the protein via the 2' phosphate moiety. Moreover, we present four co-crystal structures with the activating molecules glucose 1-phosphate, fructose 6-phosphate, AMP and ADP determined at resolutions ranging from 2.3 A to 2.6 A. These crystal structures reveal a common regulatory site able to accommodate the different activators. A phosphate-binding pocket serves as an anchor point ensuring similar binding geometry. The observed conformational changes upon activator binding are discussed in terms of allosteric regulation. Furthermore, we present a crystal structure of Tt-GAPN in complex with the substrate D-GAP at 2.3 A resolution, which allows us to analyse the structural basis for substrate binding, the mechanism of catalysis as well as the stereoselectivity of the enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号