首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.  相似文献   

2.
3.
The Rho-GTPase Rac1 stimulates actin remodelling at the cell periphery by relaying signals to Scar/WAVE proteins leading to activation of Arp2/3-mediated actin polymerization. Scar/WAVE proteins do not interact with Rac1 directly, but instead assemble into multiprotein complexes, which was shown to regulate their activity in vitro. However, little information is available on how these complexes function in vivo. Here we show that the specifically Rac1-associated protein-1 (Sra-1) and Nck-associated protein 1 (Nap1) interact with WAVE2 and Abi-1 (e3B1) in resting cells or upon Rac activation. Consistently, Sra-1, Nap1, WAVE2 and Abi-1 translocated to the tips of membrane protrusions after microinjection of constitutively active Rac. Moreover, removal of Sra-1 or Nap1 by RNA interference abrogated the formation of Rac-dependent lamellipodia induced by growth factor stimulation or aluminium fluoride treatment. Finally, microinjection of an activated Rac failed to restore lamellipodia protrusion in cells lacking either protein. Thus, Sra-1 and Nap1 are constitutive and essential components of a WAVE2- and Abi-1-containing complex linking Rac to site-directed actin assembly.  相似文献   

4.
Abi-1 is an adaptor protein for Abelson kinase (c-Abl), and Abi-1 promotes the Abl-mediated phosphorylation of Mammalian Enabled (Mena) by binding both c-Abl and Mena. Here, we identified a new phosphorylation site (Y398) in the SH3 domain of Abi-1, and disruption of Y398, combined with the previously identified phosphorylation site Y213, significantly weakens the binding of Abi-1 to c-Abl. The SH3 domain of Abi-1 and the proline-rich domain of c-Abl are involved in this interaction. Abi-1 phosphorylation at both sites stimulates the phosphorylation of Mena through the activation of c-Abl kinase. The phosphorylation of Abi-1 also plays a role in enhancing the adhesion of Bcr-Abl-transformed leukemic cells.  相似文献   

5.

Background

Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex.

Principal Findings

We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons.

Conclusions

Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons.  相似文献   

6.
The Sec1p-like/Munc18 (SM) protein Munc18a binds to the neuronal t-SNARE Syntaxin1A and inhibits SNARE complex assembly. Tomosyn, a cytosolic Syntaxin1A-binding protein, is thought to regulate the interaction between Syntaxin1A and Munc18a, thus acting as a positive regulator of SNARE assembly. In the present study we have investigated the interaction between b-Tomosyn and the adipocyte SNARE complex involving Syntaxin4/SNAP23/VAMP-2 and the SM protein Munc18c, in vitro, and the potential involvement of Tomosyn in regulating the translocation of GLUT4 containing vesicles, in vivo. Tomosyn formed a high affinity ternary complex with Syntaxin4 and SNAP23 that was competitively inhibited by VAMP-2. Using a yeast two-hybrid assay we demonstrate that the VAMP-2-like domain in Tomosyn facilitates the interaction with Syntaxin4. Overexpression of Tomosyn in 3T3-L1 adipocytes inhibited the translocation of green fluorescent protein-GLUT4 to the plasma membrane. The SM protein Munc18c was shown to interact with the Syntaxin4 monomer, Syntaxin4 containing SNARE complexes, and the Syntaxin4/Tomosyn complex. These data suggest that Tomosyn and Munc18c operate at a similar stage of the Syntaxin4 SNARE assembly cycle, which likely primes Syntaxin4 for entry into the ternary SNARE complex.  相似文献   

7.
Slingshot-1 (SSH1) is a protein phosphatase that dephosphorylates and activates cofilin, an actin-severing and -disassembling protein. SSH1 is bound to and activated by F-actin, but not G-actin. SSH1 is accumulated in the F-actin-rich lamellipodium but is also diffusely distributed in the cytoplasm. It remains unknown whether SSH1 is activated by soluble (low-level polymerized) actin filaments in the cytoplasm. In this study, we show that SSH1 binds to gelsolin via actin filaments in the cytosolic fraction. Gelsolin promoted solubilization of actin filaments and SSH1 in cell-free assays and in cultured cells. SSH1 was activated by gelsolin-generated soluble actin filaments. Furthermore, gelsolin enhanced cofilin dephosphorylation in neuregulin-stimulated cells. Our results suggest that cytosolic SSH1 forms a complex with gelsolin via soluble actin filaments and is activated by gelsolin-generated soluble actin filaments and that gelsolin promotes stimulus-induced cofilin dephosphorylation through increasing soluble actin filaments, which support SSH1 activation in the cytoplasm.  相似文献   

8.
Recent studies have suggested that members of the Abl interactor (Abi) protein family negatively regulate cell growth and transformation. To date, however, no specific role in these cellular processes has been identified for the Abi family. Here we describe the inhibition by overexpressed Abi-1 of a mitogenic pathway activated by both growth factors and v-Abl. We have identified the guanine nucleotide exchange factors Sos1 and Sos2 as novel binding partners of Abi-1. A domain that is required for interaction with Sos in vivo has been mapped to the amino terminus of Abi-1. Overexpression of Abi-1 inhibits epidermal growth factor (EGF)-induced activation of extracellular signal-regulated kinases (Erks) but does not affect EGF-induced activation of c-Jun N-terminal kinase or Akt. In addition, overexpression of Abi-1 blocks Erk activation induced by v-Abl. In both cases, the maximal inhibitory effect requires an intact amino-terminal Sos-binding domain in Abi-1. Finally, we demonstrate that tyrosine phosphorylation of endogenous Abi-1 in fibroblasts is induced by both v-Abl and serum stimulation, further suggesting a role for Abi-1 in signal transduction initiated by v-Abl and growth factors. Taken together, these findings suggest that overexpressed Abi proteins negatively regulate cell growth and transformation by specifically targeting the Erk pathway.  相似文献   

9.
Slingshot-1 (SSH1), a member of a dual-specificity protein phosphatase family, regulates actin dynamics by dephosphorylating and reactivating cofilin, an actin-depolymerizing factor. SSH1 has the SSH family-specific, N-terminal, noncatalytic (SSH-N) domain, consisting of the A and B subdomains. SSH1 is activated by binding to actin filaments. In this study, we examined the mechanisms of SSH1 substrate recognition of phospho-cofilin (P-cofilin) and SSH1 activation by F-actin. We found that P-cofilin binds to a phosphatase-inactive mutant, SSH1(CS), in which the catalytic Cys-393 is replaced by Ser. Using a series of deletion mutants, we provided evidence that both the phosphatase (P) domain and the adjacent B domain are indispensable for P-cofilin binding of SSH1(CS) and cofilin-phosphatase activity of SSH1. In contrast, the A domain is required for the F-actin-mediated activation of SSH1, but not for P-cofilin binding or basal cofilin-phosphatase activity. The P domain alone is sufficient for the phosphatase activity toward p-nitrophenyl phosphate (pNPP), indicating that the SSH-N domain is not essential for the basal phosphatase activity of SSH1. Addition of F-actin increased the cofilin-phosphatase activity of SSH1 more than 1200-fold, but the pNPP-phosphatase activity only 2.2-fold, which suggests that F-actin principally affects the cofilin-specific phosphatase activity of SSH1. When expressed in cultured cells, SSH1, but not its mutant deleted of SSH-N, accumulated in the rear of the lamellipodium. Together, these findings suggest that the conserved SSH-N domain plays critical roles in P-cofilin recognition, F-actin-mediated activation, and subcellular localization of SSH1.  相似文献   

10.
Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.  相似文献   

11.
In previous work we showed that Abl interactor 1 (Abi-1), by linking enzyme and substrate, promotes the phosphorylation of Mammalian Enabled (Mena) by c-Abl. To determine whether this mechanism extends to other c-Abl substrates, we used the yeast two-hybrid system to search for proteins that interact with Abi-1. By screening a human leukocyte cDNA library, we identified BCAP (B-cell adaptor for phosphoinositide 3-kinase) as another Abi-1-interacting protein. Binding experiments revealed that the SH3 domain of Abi-1 and the C-terminal polyproline structure of BCAP are involved in interactions between the two. In cultured cells, Abi-1 promoted phosphorylation of BCAP not only by c-Abl but also by v-Abl. The phosphorylation sites of BCAP by c-Abl were mapped to five tyrosine residues in the C-terminal region that are well conserved in mammals. These results show that Abi-1 promotes Abl-mediated BCAP phosphorylation and suggest that Abi-1 in general coordinates kinase-substrate interactions.  相似文献   

12.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.  相似文献   

13.
Mammalian Enabled (Mena) is a mammalian homologue of Drosophila Enabled (Ena), which genetically interacts with Drosophila Abl tyrosine kinase. The signaling pathway involving c-Abl and Mena (Ena) is not fully understood. To find molecules that participate in the c-Abl/Mena pathway, we searched for Mena-binding proteins using a yeast two-hybrid system. We identified Abl interactor 1 (Abi-1), which is known to interact with c-Abl, as a binding protein for Mena. Binding analysis revealed that the Ena/Vasp homology 1 domain of Mena and the polyproline structure of Abi-1 are necessary for the interaction. The interaction between Mena and Abi-1 was also observed in a mammalian expression system. Importantly, Abi-1 dramatically promoted c-Abl-mediated tyrosine phosphorylation of Mena but not other substrates such as c-Cbl. Mutational analysis demonstrated that the phosphorylation site of Mena is Tyr-296. Our results suggest that Abi-1 regulates c-Abl-mediated phosphorylation of Mena by interacting with both proteins.  相似文献   

14.
Abl interactor (Abi) was identified as an Abl tyrosine kinase-binding protein and subsequently shown to be a component of the macromolecular Abi/WAVE complex, which is a key regulator of Rac-dependent actin polymerization. Previous studies showed that Abi-1 promotes c-Abl-mediated phosphorylation of Mammalian Enabled (Mena) and WAVE2. In addition to Abi-1, mammals possess Abi-2 and NESH (Abi-3). In this study, we compared the three Abi proteins in terms of the promotion of c-Abl-mediated phosphorylation and the formation of Abi/WAVE complex. Although Abi-2, like Abi-1, promoted the c-Abl-mediated phosphorylation of Mena and WAVE2, NESH (Abi-3) had no such effect. This difference was likely due to their binding abilities as to c-Abl. Immunoprecipitation revealed that NESH (Abi-3) is present in the Abi/WAVE complex. Our results suggest that NESH (Abi-3), like Abi-1 and Abi-2, is a component of the Abi/WAVE complex, but likely plays a different role in the regulation of c-Abl.  相似文献   

15.
Campa F  Machuy N  Klein A  Rudel T 《Cell research》2006,16(9):759-770
Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Racl stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-interactor (Abi)- 1 and βP1X, a guanine nucleotide exchange factor for Racl, localise at these Rac1-induced actin structures and play important roles in the induction of membrane dorsal ruffling in response to PDGF in fibroblasts. Here, we demonstrate a novel interaction between Abi-1 and βPIX using the yeast two-hybrid system, in vitro pull-down assays, and in vivo co-immunoprecipitation experiments. In vitro, the C-terminal fragment of βPIX interacted with Abi-1, while in vivo the N-terminal fragment of βPIX interacted with Abi-1. The biological function of this interaction was investigated in mouse fibroblasts in response to PDGF stimulation. Abi-1 and βPIX co-localised in the cytoplasm and to membrane dorsal ruffles after PDGF treatment. We show that the co-expression of Abi-1 and truncated forms of βPIX in mouse fibroblasts blocked PDGF-induced membrane dorsal ruffles. Together, these results show that the interaction between Abi-1 and βPIX is involved in the formation of growth factor-induced membrane dorsal ruffles.  相似文献   

16.
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.  相似文献   

17.
Cell movement is mediated by the protrusion of cytoplasm in the form of sheet- and rod-like extensions, termed lamellipodia and filopodia. Protrusion is driven by actin polymerization, a process that is regulated by signaling complexes that are, as yet, poorly defined. Since actin assembly is controlled at the tips of lamellipodia and filopodia [1], these juxtamembrane sites are likely to harbor the protein complexes that control actin polymerization dynamics underlying cell motility. An understanding of the regulation of protrusion therefore requires the characterization of the molecular components recruited to these sites. The Abl interactor (Abi) proteins, targets of Abl tyrosine kinases [2-4], have been implicated in Rac-dependent cytoskeletal reorganization in response to growth factor stimulation [5]. Here, we describe the unique localization of Abi proteins in living, motile cells. We show that Abi-1 and Abi-2b fused to enhanced yellow fluorescent protein (EYFP) are recruited to the tips of lamellipodia and filopodia. We identify the targeting domain as the homologous N terminus of these two proteins. Our findings are the first to suggest a direct involvement of members of the Abi protein family in the control of actin polymerization in protrusion events, and establish the Abi proteins as potential regulators of motility.  相似文献   

18.
Syntaxin 1A binds to and inhibits epithelial cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and synaptic Ca(2+) channels in addition to participating in SNARE complex assembly and membrane fusion. We exploited the isoform-specific nature of the interaction between syntaxin 1A and CFTR to identify residues in the H3 domain of this SNARE (SNARE motif) that influence CFTR binding and regulation. Mutating isoform-specific residues that map to the surface of syntaxin 1A in the SNARE complex led to the identification of two sets of hydrophilic residues that are important for binding to and regulating CFTR channels or for binding to the syntaxin regulatory protein Munc-18a. None of these mutations affected syntaxin 1A binding to other SNAREs or the assembly and stability of SNARE complexes in vitro. Conversely, the syntaxin 1A-CFTR interaction was unaffected by mutating hydrophobic residues in the H3 domain that influence SNARE complex stability and Ca(2+) channel regulation. Thus, CFTR channel regulation by syntaxin 1A involves hydrophilic interactions that are mechanistically distinct from the hydrophobic interactions that mediate SNARE complex formation and Ca(2+) channel regulation by this t-SNARE.  相似文献   

19.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

20.
Yeast Yih1 protein and its mammalian ortholog IMPACT, abundant in neurons, are inhibitors of Gcn2, a kinase involved in amino acid homeostasis, stress response, and memory formation. Like Gcn2, Yih1/IMPACT harbors an N-terminal RWD domain that mediates binding to the Gcn2 activator Gcn1. Yih1 competes with Gcn2 for Gcn1 binding, thus inhibiting Gcn2. Yih1 also binds G-actin. Here, we show that Yih1-actin interaction is independent of Gcn1 and that Yih1-Gcn1 binding does not require actin. The Yih1 RWD (residues 1-132) was sufficient for Gcn2 inhibition and Gcn1 binding, but not for actin binding, showing that actin binding is dispensable for inhibiting Gcn2. Actin binding required Yih1 residues 68-258, encompassing part of the RWD and the C-terminal "ancient domain"; however, residues Asp-102 and Glu-106 in helix3 of the RWD were essential for Gcn1 binding and Gcn2 inhibition but dispensable for actin binding. Thus, the Gcn1- and actin-binding sites overlap in the RWD but have distinct binding determinants. Unexpectedly, Yih1 segment 68-258 was defective for inhibiting Gcn2 even though it binds Gcn1 at higher levels than does full-length Yih1. This and other results suggest that Yih1 binds with different requirements to distinct populations of Gcn1 molecules, and its ability to disrupt Gcn1-Gcn2 complexes is dependent on a complete RWD and hindered by actin binding. Modeling of the ancient domain on the bacterial protein YigZ showed peculiarities to the eukaryotic and prokaryotic lineages, suggesting binding sites for conserved cellular components. Our results support a role for Yih1 in a cross-talk between the cytoskeleton and translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号