首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Time lag between subcutaneous interstitial fluid and plasma glucose decreases the accuracy of real-time continuous glucose monitors. However, inverse filters can be designed to correct time lag and attenuate noise enabling the blood–glucose profile to be reconstructed in real time from continuous measurements of the interstitial-fluid glucose. We designed and tested a Wiener filter using a set of 20 sensor-glucose tracings (~30 h each) with a 1-min sample interval. Delays of 10 ± 2 min (mean ± SD) were introduced into each signal with additive Gaussian white noise (SNR = 40 dB). Performance of the filter was compared to conventional causal and non-causal seventh-order finite-impulse response (FIR) filters. Time lags introduced an error of 5.3 ± 2.7%. The error increased in the presence of noise (to 5.7 ± 2.6%) and attempts to remove the noise with conventional low-pass filtering increased the error still further (to 7.0 ± 3.5%). In contrast, the Wiener filter decreased the error attributed to time delay by ~50% in the presence of noise (from 5.7% to 2.60 ± 1.26%) and by ~75% in the absence of noise (5.3% to 1.3 ± 1%). Introducing time-lag correction without increasing sensitivity to noise can increase CGM accuracy.  相似文献   

2.
The development of implantable glucose sensors for use in diabetes treatment has been pursued for decades. However, enzyme-based glucose sensors often fail in vivo. In our previous work, we engineered a novel glucose indicator protein (GIP) that can sense glucose without relying on any enzymes and cofactors. Nevertheless, this GIP is unsuitable for blood glucose monitoring due to its low dissociation constant. Here, we report a novel approach to creating a new GIP that can be used to monitor blood glucose level. By disrupting pi-pi stacking around GIP's glucose binding site through site-directed mutagenesis, we showed that GIP's dissociation constant can be manipulated from 0.026 mM to 7.86 mM. This approach yielded four GIP mutants. We showed that one of the mutants can be used to detect glucose from 0 to 32 mM, while another mutant can be employed to visualize intracellular glucose (0-200 μM) within living cells through FRET imaging microscopy measurement.  相似文献   

3.
Novel planar glucose biosensors to be used for continuous monitoring have been developed. The electrodes are produced with the "screen printing" technique, and present a high degree of reproducibility together with a low cost and the possibility of mass production. Prior to enzyme immobilisation, electrodes are chemically modified with ferric hexacyanoferrate (Prussian Blue). This allows the detection of the hydrogen peroxide produced by the enzymatic reaction catalysed by GOD, at low applied potential (ca. 0.0 V versus Ag/AgCl), highly limiting any electrochemical interferences. The layer of Prussian Blue (PB) showed a high stability at the working conditions (pH 7.4) and also after 1 year of storage dry at RT, no loss of activity was observed. The assembled glucose biosensors, showed high sensitivity towards glucose together with a long-term operational and storage stability. In a continuous flow system, with all the analytical parameters optimised, the glucose biosensors detected glucose concentration as low as 0.025 mM with a linear range up to 1.0mM. These probes were also tested over 50-60 h in a continuous flow mode to evaluate their operational stability. A 0.5 mM concentration of glucose was continuously fluxed into a biosensor wall-jet cell and the current due to the hydrogen peroxide reduction was continuously monitored. After 50-60 h, the drift of the signal observed was around 30%. Because of their high stability, these sensors suggest the possibility of using such biosensors, in conjunction with a microdialysis probe, for a continuous monitoring of glucose for clinical purposes.  相似文献   

4.
Novel micromachined silicon sensor for continuous glucose monitoring   总被引:1,自引:0,他引:1  
The construction and the application properties of a micro-machined silicon sensor for continuous glucose monitoring are presented. The sensor uses the conventional enzymatic conversion of glucose with amperometric detection of H(2)O(2). The innovation is the precise diffusion control of the analyte through a porous silicon membrane into a silicon etched cavity containing the immobilised enzyme. A variation of the number and size of the membrane pores allows to adjust the linear range of the sensor to the respective requirement. The sensor was tested in vitro as well as in clinical studies, being supplied with interstitial fluid. The cavity sensor was designed for a linear range between 0.5 and 20 mM. A signal response time of below 30 s and a signal stability exceeding 1 week is shown. By using a double cavity sensor falsification of the glucose signal by interfering substances can be compensated. In clinical trials the sensor measured continuously in interstitial fluid for up to 18 h without any signal drift and with good correlation to blood glucose reference values.  相似文献   

5.
The changes in plasma glucose concentration and in interstitial glucose concentration, determined with a miniaturized subcutaneous glucose sensor, were investigated in anesthetized nondiabetic rats. Interstitial glucose was estimated through two different calibration procedures. First, after a glucose load, the magnitude of the increase in interstitial glucose, estimated through a one-point calibration procedure, was 70% of that in plasma glucose. We propose that this is due to the effect of endogenous insulin on peripheral glucose uptake. Second, during the spontaneous secondary decrease in plasma glucose after the glucose load, interstitial glucose decreased faster than plasma glucose, which may also be due to the effect of insulin on peripheral glucose uptake. Third, during insulin-induced hypoglycemia, the decrease in interstitial glucose was less marked than that of plasma glucose, suggesting that hypoglycemia suppressed transfer of glucose into the interstitial tissue; subsequently, interstitial glucose remained lower than plasma glucose during its return to basal value, suggesting that the stimulatory effect of insulin on peripheral glucose uptake was protracted. If these observations obtained in rats are relevant to human physiology, such discrepancies between plasma and interstitial glucose concentration may have major implications for the use of a subcutaneous glucose sensor in continuous blood glucose monitoring in diabetic patients.  相似文献   

6.
<正>Vaccination is one of the most powerful tools to extend the average lifespan of humans.Vaccination has successfully eradicated smallpox and significantly reduced the morbidity and mortality of several infectious diseases,such as poliomyelitis[1].It is currently one of the most effective measures to control infectious diseases[1].The health benefits brought by widespread vaccination are beyond doubt,whether for public health or individuals.  相似文献   

7.
8.
We present a viscometric affinity biosensor for continuous monitoring of glucose in biological fluids such as blood and plasma. The sensing principle of this chemico-mechanical sensor is based upon the viscosity variation of a sensitive fluid with glucose concentration. Basically, this device includes both an actuating and a sensing piezoelectric diaphragms as well as a flow-resistive microchannel. In order to confine the sensitive fluid and allow glucose diffusion into the sensor, a free-standing alumina nanoporous membrane is also used as size-selective interface. Measurements carried out at nominal temperatures of 25 and 37 °C reveal that this sensor topology exhibits a high resolution in the current range of physiological blood glucose concentrations, i.e. 2-20 mM. In addition, complete reversibility was also demonstrated for at least 3 days. Finally, measurements performed in human blood serum confirm that this sensor fulfils all basic requirements for a use in continuous glucose monitoring of biological fluids.  相似文献   

9.
Oxygen and glucose biosensors have been designed, fabricated, characterized and optimized for real-time continuous monitoring on a new smart catheter for use in patients with traumatic brain injury (TBI). Oxygen sensors with three-electrode configuration were designed to achieve zero net oxygen consumption. Glucose sensors were based on the use of platinum nanoparticle-enhanced electrodes that were modified with polycation and glucose oxidase immobilized by chitosan matrix. An iridium oxide electrode was developed to work as a biocompatible reference electrode with enhanced durability and stability in the biological solutions. A study of the effect of temperature on oxygen sensor performance, and both temperature and oxygen effects on glucose sensor performance were accomplished to enhance their operative stability and provide useful information for in vivo applications. A new methodology for automatic correction of the temperature and oxygen dependence of biosensor outputs is demonstrated through programmed LabView™ software. In vitro experiments in both physiological and pathophysiological ranges (oxygen: 0–60 mmHg; glucose: 0.1–10 mM; temperature: 25–40 °C) with clinical samples of cerebrospinal fluid obtained from TBI patients have demonstrated stable measurements with enhanced accuracy, indicating the feasibility of the sensors for a real-time continuous in vivo monitoring.  相似文献   

10.
This paper describes the first devised method for the nonenzymatic and electrochemical glucose monitoring in 100% human whole blood and serum. The nanoporous Pt electrode allows for the selective amplification of glucose oxidation in the presence of electroactive interfering species without the need for enzymatic reaction. The outer membrane was particularly optimized to allow glucose molecules to be electrochemically detected against the numerous constituents of human blood. The proposed sensor provided reproducible amperometric responses to glucose in human serum and whole blood. Its sensitivity was maintained for at least 7h under constantly electrified conditions, and continued to work properly after 30 days of storage in human whole blood and serum. Unlike the enzyme-based glucose sensors, it was found to be minimally affected by thermal fluctuation, so as to remain successful even after steam sterilization at high temperature (134 °C) and pressure (0.22 Mpa). The unprecedented long-term stability and sterilization compatibility observed herein suggest a promising alternative to conventional enzymatic glucose sensors for many analytical and clinical applications, particularly for continuous glucose monitoring devices designed to potentially lead to a closed-loop artificial pancreas by combining them with an insulin pump.  相似文献   

11.
Hypoglycemia is associated with increased risk of cardiovascular adverse clinical outcomes. There is evidence that impaired glucose tolerance (IGT) is associated with cardiovascular morbidity and mortality. Whether IGT individuals have asymptomatic hypoglycemia under real-life conditions that are related to early atherosclerosis is unknown. To this aim, we measured episodes of hypoglycemia during continuous interstitial glucose monitoring (CGM) and evaluated their relationship with early manifestation of vascular atherosclerosis in glucose tolerant and intolerant individuals. An oral glucose tolerance test (OGTT) was performed in 79 non-diabetic subjects. Each individual underwent continuous glucose monitoring for 72 h. Cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. IGT individuals had a worse cardiovascular risk profile, including higher IMT, and spent significantly more time in hypoglycemia than glucose-tolerant individuals. IMT was significantly correlated with systolic (r = 0.22; P = 0.05) and diastolic blood pressure (r = 0.28; P = 0.01), total (r = 0.26; P = 0.02) and LDL cholesterol (r = 0.27; P = 0.01), 2-h glucose (r = 0.39; P<0.0001), insulin sensitivity (r = −0.26; P = 0.03), and minutes spent in hypoglycemia (r = 0.45; P<0.0001). In univariate analyses adjusted for gender, minutes spent in hypoglycemia were significantly correlated with age (r = 0.26; P = 0.01), waist circumference (r = 0.33; P = 0.003), 2-h glucose (r = 0.58; P<0.0001), and 2-h insulin (r = 0.27; P = 0.02). In a stepwise multivariate regression analysis, the variables significantly associated with IMT were minutes spent in hypoglycemia (r2 = 0.252; P<0.0001), and ISI index (r2 = 0.089; P = 0.004), accounting for 34.1% of the variation. Episodes of hypoglycemia may be considered as a new potential cardiovascular risk factor for IGT individuals.  相似文献   

12.
The purpose of this study was to observe both the glycemic variability in abdominally obese men with normal glucose tolerance (NGT) and the relationship between glycemic variability and early atherosclerosis. This case‐control study included 23 abdominally obese men (waist circumference (WC) ≥90 cm) and 23 nonabdominally obese men (WC <90 cm) with NGT who were between 20 and 50 years of age. All subjects were of the Han ethnicity. The cases and controls were age‐matched. A continuous glucose monitoring system (CGMS) was used in this study. With the CGMS, the standard deviation of blood glucose (SDBG) and the mean amplitude of glucose excursion (MAGE) were calculated to estimate glycemic variability. The carotid intima‐media thickness (CIMT) was used as a surrogate marker of early atherosclerosis. Mean blood glucose (MBG) (6.13 ± 0.94 vs. 5.55 ± 0.87 mmol/l), SDBG (0.89 ± 0.34 vs. 0.64 ± 0.24 mmol/l), MAGE (2.05 ± 0.83 vs. 1.57 ± 0.52 mmol/l), and CIMT (0.73 ± 0.12 vs. 0.67 ± 0.05 mm) were significantly higher in the abdominally obese men than in the nonabdominally obese men (P < 0.05). WC positively correlated with MBG (r = 0.302, P = 0.041), SDBG (r = 0.362, P = 0.013), MAGE (r = 0.302, P = 0.041), and CIMT (r = 0.487, P = 0.001). CIMT did not correlate with MBG (r = 0.206, P = 0.169), SDBG (r = 0.114, P = 0.450), and MAGE (r = 0.085, P = 0.574). After multivariate analysis, WC was still significantly associated with MBG (β = 0.025, P = 0.041), SDBG (β = 0.010, P = 0.013), MAGE (β = 0.019, P = 0.042), and CIMT (β = 0.008, P = 0.022). This study demonstrates that glycemic variability is increased in abdominally obese men with NGT. A relationship between glycemic variability and atherosclerosis was not observed in this study and requires further investigation.  相似文献   

13.
14.
15.
The immobilization process of glucose oxidase(GOx) in the poly(1,3-diaminobenzene) (poly(1,3-DAB)) network was closely investigated in situ using an electrochemical quartz crystal microbalance(EQCM). GOx captured in approximately 50 nm thick poly-1,3-DAB layer causes a 514 Hz frequency increase, corresponding to 541 ng, and distributes mostly in the outer part of the polymer film. The presence of poly-L-lysine and glutaraldehyde during electropolymerization of poly(1,3-DAB) improves sensitivity by raising the amount of GOx immobilized. Adding a protective membrane on to the enzyme layer from poly(tetrafluoroethylene) (PTFE) dispersed in aqueous media lets the entire fabrication procedure finish perfectly without nonaqueous solvent. The finalized needle-type glucose sensors show competent functions in sensitivity, stability, biocompatibility, lifetime, interference and reproducibility.  相似文献   

16.
17.
18.
19.
A technique used to investigate broad scale phenological events by means of repetitive satellite observations is described. The temporal sequence of leaf development and senescence of deciduous forest and crop canopies is characterized by changes in their reflectance of solar energy at several wavelength intervals. Correlation with simultaneous ground observations is used to develop relationships between normalized reflectivity ratios derived from multispectral satellite data and the areal percentage of green vegetative material present in the canopy. Satellite observations made over a nationwide network of test sites during the years 1972 and 1973, provide estimates of the amount of green canopy present as it developes during the spring season as well as estimates of the percentage of leaf coloration and abscission during the autumnal period.Presented at the Seventh International Biometeorological Congress, 17–23 August 1975, College Park, Maryland, USA.  相似文献   

20.
We analysed pollen and spore data obtained from one continuous and two personal Burkard sporetraps during the spring months of three years (2007–2009). For the statistical analysis, the data was normalised with a log transformation, and then subjected to an ANOVA and a Pearson correlation analysis. The best time to use the personal samplers was determined from 15 years of continuous aerobiological monitoring pollen data to be between 11:00–16:00, when highest concentration was found and in a steady way. Height of sampling was compared at floor level and at 1.1 m with personal samplers; both of them were on a terrace at 6 m above the ground, but no statistically significant differences were found. The results revealed that there were apparently no differences between continuous and personal Burkard samplers for total pollen and spores. Nevertheless, distinguishing the main pollen types (i.e., Poaceae, Quercus, Olea, Cupressaceae, Plantago, and Platanus) revealed that there are some differences for Poaceae pollen only. In conclusion, personal samplers could be used to anticipate continuous monitoring data because their sampling is shorter and the results may be obtained quicker than with a continuous sampler, although they must never be considered as a replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号