首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation of PKC with 5 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h in human U937 myeloid leukemia cells is associated with induction of adherence, followed by monocytic differentiation and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these effects about 25% of U937 cells accumulated in an apoptotic subG1 phase after TPA treatment. The appearance of these apoptotic suspension cells was detectable throughout the time course of the culture and was independent of TPA concentrations between 0.5 and 500 nM. Experiments with cells synchronized by centrifugal elutriation revealed dominant susceptibility of G1-phase cells to TPA-mediated apoptosis. While adherent cells expressed differentiation markers including the integrin CD11c, this effect was less pronounced in the TPA-treated suspension fraction. Moreover, previous work has demonstrated cell cycle arrest in differentiating U937 cells. Accordingly, PKC activation by TPA treatment was associated with a significant expression of the cdk/cyclin inhibitor p21WAF/CIP/sdi-1 in the adherent population and subsequent G0/G1 cell cycle arrest. In contrast, suspension cells failed to induce significant levels of p21WAF/CIP/sdi-1 after TPA stimulation. Immunoblotting experiments demonstrated no difference in the expression of the pro-apoptotic factors Bax, Bad, and Bak in either control U937 and TPA-treated adherent or suspension cells, respectively. However, anti-apoptotic factors including Bcl-2, Bcl-xL, and Mcl-1 were significantly induced in the adherent population whereas no induction was detectable in the suspension cells. In this context, incubation with the caspase-3/caspase-7 specific tetrapeptide inhibitor DEVD prior to TPA treatment prevented an accumulation of cells in subG1, respectively, demonstrating an involvement of these caspases. Taken together, these data suggest that PKC activation can relay distinct signaling pathways such as induction of adherence coupled with monocytic differentiation and growth arrest, or induction of caspase-mediated apoptosis coupled with the failure to adhere and to differentiate.  相似文献   

3.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

4.
5.
FGF signaling inhibits chondrocyte proliferation, a cell type-specific response that is the basis for several genetic skeletal disorders caused by activating FGFR mutations. This phenomenon requires the function of the p107 and p130 members of the Rb protein family, and p107 dephosphorylation is one of the earliest distinguishing events in FGF-induced growth arrest. To determine whether p107 dephoshorylation played a critical role in the chondrocyte response to FGF, we sought to counteract this process by overexpressing in RCS chondrocytes the cyclin D1/cdk4 kinase complex. CyclinD/cdk4-expressing RCS cells became resistant to FGF-induced p107 dephosphorylation and growth arrest, and maintained significantly high levels of cyclin E/cdk2 activity and of phosphorylated p130 at later times of FGF treatment. We explored the involvement of a phosphatase in p107 dephosphorylation. Expression of the SV40 small T-Ag, which inhibits the activity of the PP2A phosphatase, or knockdown of the expression of the PP2A catalytic subunit by RNA interference prevented p107 dephosphorylation and FGF-induced growth arrest of RCS cells. Furthermore, an association between p107 and PP2A was induced by FGF treatment. Our data show that p107 dephosphorylation is a key event in FGF-induced cell cycle arrest and indicate that in chondrocytes FGF activates the PP2A phosphatase to promote p107 dephosphorylation.  相似文献   

6.
Evidence for a pre-restriction point Cdk3 activity   总被引:4,自引:0,他引:4  
We have examined the activity of cyclin-dependent kinase 3 (cdk3) during G1-phase of the cell cycle in Chinese Hamster Ovary (CHO) fibroblasts. Histone H1 kinase activity associated with anti-cdk3 immunoprecipitates peaked during a brief window of time, 2-3 h prior to the restriction point. In vitro cdk3 activity was sensitive to roscovitine, a drug previously shown to inhibit cdks 1, 2, and 5, but not cdk4 or 6. Early G1-phase activation of cdk3 was downregulated by treatment of cells with MG132, an inhibitor of the proteasome, and by the protein synthesis inhibitor cycloheximide. These results provide evidence for a pre-restriction point cdk3 activity that requires both the synthesis of a regulatory subunit and degradation of an inhibitor.  相似文献   

7.
The p21 (cip1/waf1) protein induces cell cycle arrest through inhibition of the activity of cdk (cyclin dependent kinase)/cyclin complexes. Expression of p21 is induced in a p53-dependent manner by DNA damage. p21 can also be induced independently of p53 by phorbol ester or okadaic acid. In this study, we have addressed the role of the PKC (protein kinase C) signaling pathway in the induction of p21 in response to PMA (phorbol myristate acetate) and okadaic acid. Levels of p21 (protein and mRNA) rapidly increased (within approximately 4 h) in U937 cells treated with PMA. The PKC-specific inhibitors RO 31-8220 and GF109203X down-regulated PMA or okadaic acid-induced p21 expression. Following persistent PKC activation, p21 mRNA levels remained elevated, indicating an enhanced stability of the mRNA. Using actinomycin D to measure mRNA stability and p21 promoter luciferase assays to measure activity, we provide evidence to support a role for the PKC signaling pathway in p21 mRNA stability. Thus, PKC regulates the amount of p21 in U937 cells at the level of mRNA accumulation and translation.  相似文献   

8.
DNA damaging agents such as ultraviolet (UV) induce cell cycle arrest followed by apoptosis in cells where irreparable damage has occurred. Here we show that during early phase G1 arrest which occurs in UV-irradiated human U343 glioblastoma cells, there are (1) decreases in cyclin D1 and cdk4 levels which parallel a loss of S-phase promoting cyclin D1/cdk4 complexes, and (2) increases in p53 and p21 protein levels. We also show that the late phase UV-induced apoptosis of U343 cells occurs after cell cycle re-entry and parallels the reappearance of cyclin D1 and cdk4 and cyclin D1/cdk4 complexes. These findings suggest that cyclin D1 can abrogate UV-induced G1 arrest and that the p53-mediated apoptosis that occurs in these cells is dependent on cyclin D1 levels. We examined these possibilities using U343 cells that ectopically express cyclin D1 and found that indeed cyclin D1 can overcome the cell cycle arrest caused by UV. Moreover, the appearance of p53 protein and the induction of apoptosis in UV-irradiated cells was found to be dependent on the level of ectopically expressed cyclin D1. These findings, therefore, indicate that expression of cyclin D1 following DNA damage is essential for cell cycle re-entry and p53-mediated apoptosis.  相似文献   

9.
A O Morla  G Draetta  D Beach  J Y Wang 《Cell》1989,58(1):193-203
Tyrosine phosphorylation of cdc2 is regulated in the cell cycle of mouse 3T3 fibroblasts. Phosphotyrosine in cdc2 is detectable at the onset of DNA synthesis and becomes maximal in the G2 phase of the cell cycle. Quantitative tyrosine dephosphorylation of cdc2 occurs during entry into mitosis and no phosphotyrosine is detected during the G1 phase of the cell cycle. While increasing tyrosine phosphorylation of cdc2 correlates with the formation of a cdc2/p62 complex, the tyrosine phosphorylated cdc2 is inactive as a histone H1 kinase. cdc2 is fully dephosphorylated in its most active mitotic form, yet specific tyrosine dephosphorylation of interphase cdc2 in vitro is insufficient to activate the kinase. In vivo inhibition of tyrosine dephosphorylation by exposure of cells to a phosphatase inhibitor is associated with G2 arrest, which is reversible upon the removal of the phosphatase inhibitor. Tyrosine dephosphorylation of cdc2 may be one of a number of obligatory steps in the mitotic activation of the kinase.  相似文献   

10.
Activation of protein kinase C (PKC) by TPA in human U937 myeloid leukemia cells is associated with induction of adherence, differentiation, and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these differentiating cells about 25% of U937 cells accumulated in the subG1 phase after TPA treatment. This effect proved to be phorbol ester-specific, since other compounds such as retinoic acid or vitamin D3 failed to induce apoptosis in conjunction with differentiation. Only a specific inhibitor of PKC, GF109203X, but not the broad-spectrum kinase inhibitor staurosporine or a tyrosine kinase inhibitor genistein could reverse the induction of apoptosis. Bryostatin-1, another specific PKC activator with distinct biochemical activity failed to induce apoptosis. Moreover, bryostatin-1 completely abolished the induction of apoptosis in U937 cells even if added 8 hours after TPA treatment. Apart from apoptosis induced by various chemotherapeutic drugs, TPA-related cell death is not mediated by an autocrine Fas-FasL loop and could not be prevented by a blocking antibody to the Fas receptor. However, a 75% reduction in the number of apoptotic cells after TPA stimulation was achieved by preincubation with a blocking antibody to the TNFalpha receptor. Tetrapeptide cleavage assays revealed a four-fold increase in the DEVD-cleavage activity in U937 cells compared to a three-fold increase in TUR cells. Immunoblotting demonstrated that TUR cells did not activate significant levels of caspase-3 or -7, whereas in U937 cells a 20-kDa cleavage product corresponding to activated caspase-3 was detectable after 3 d TPA exposure. Moreover, immunoblots revealed a strongly reduced expression of the adaptor molecule APAF-1, which is required for cytochrome c-dependent activation of caspase-9 and subsequently caspase-3. APAF-1 proved to be inducible after PKC activation with phorbol ester in U937, but not in TUR cells. Thus, APAF-1 expression may, at least in part, be regulated by PKC activity and reduced APAF-1 levels are associated with resistance to various inducers of apoptosis. Furthermore, TPA exposure of U937 cells is associated with increased levels of the pro-apoptotic proteins Bak and Bcl-xs, whereas simultaneously a decline in the Bcl-2 expression was noticable.  相似文献   

11.
12.
13.
Current models suggest that cyclin B1/cdk1 regulates the G2 to M transition and that its activity is maximal during the period from prophase to metaphase in mammalian cells. Although data are lacking, the idea that cyclin B1/cdk1 regulates the transit time from prophase to metaphase is reasonable. Development of small molecule inhibitors of cyclin dependent kinases (cdk’s) as cancer therapeutics presents an opportunity to evaluate the effects of inhibiting cdk’s in asynchronous cell populations. Analysis of cdk1 inhibitors is complicated by their ability to inhibit other cdk’s in vitro at higher concentrations. In this study we measured the effects of two cdk1 inhibitors on S, G2, and M transit for Hela cells and correlated these effects on cyclin B1/cdk1 and cyclin A/cdk2 activities. Dose responses demonstrate that low concentrations of both compounds inhibited the activity of cdk1 but not cdk2 in HeLa cells. The partial loss of cdk1 activity at low doses induced a prophase accumulation during a 3 h period and an increased transit time through mitosis. In addition, both inhibitors lengthened the G2 transit time with progressively greater effect on mid and late G2. High doses of both inhibitors increased the S phase time, which correlated with the inhibition of cdk2 activity. These results suggest that cdk1-cyclin activity is rate limiting for cell cycle progression during a period from mid G2 through prophase.  相似文献   

14.
15.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

16.
The Retinoblastoma protein (Rb) is important in the control of cell proliferation and apoptosis. Its activity is controlled by reversible phosphorylation on several serine and threonine residues. When Rb is hypophosphorylated, it inhibits proliferation by preventing passage through the G1- S phase transition. Hyperphosphorylated Rb promotes cell cycle progression. The role of Rb phosphorylation in the control of apoptosis is largely unknown, although several apoptotic stimuli result in dephosphorylation of Rb. It may be that dephosphorylation of specific amino acids signals apoptosis vs. cell cycle arrest. Using glutamic acid mutagenesis, we have generated 15 single phosphorylation site mutants of Rb to alter serine/threonine to glutamic acid to mimic the phosphorylated state. By calcium phosphate transfection, mutant plasmids were introduced into C33A Rb-null cells, and apoptosis was induced using UV. Apoptosis was measured by ELISA detection of degraded DNA and by immunoblotting to assess proteolytic cleavage of PARP. Our results show that only mutation of threonine-821 to glutamic acid (T821E) blocked apoptosis by 50%, whereas other sites tested had little effect. In Rb-null Saos-2 and SKUT-1 cells, the T821E mutation also blocked apoptosis induced by the cdk inhibitor, Roscovitine, by 50%. In addition, we show that endogenous Rb is dephosphorylated on threonine-821 when cells are undergoing apoptosis. Thus, our data indicates that dephosphorylation of threonine-821 of Rb is required for cells to undergo apoptosis.  相似文献   

17.
The Retinoblastoma protein (Rb) is important in the control of cell proliferation and apoptosis. Its activity is controlled by reversible phosphorylation on several serine and threonine residues. When Rb is hypophosphorylated, it inhibits proliferation by preventing passage through the G1- S phase transition. Hyperphosphorylated Rb promotes cell cycle progression. The role of Rb phosphorylation in the control of apoptosis is largely unknown, although several apoptotic stimuli result in dephosphorylation of Rb. It may be that dephosphorylation of specific amino acids signals apoptosis vs. cell cycle arrest. Using glutamic acid mutagenesis, we have generated 15 single phosphorylation site mutants of Rb to alter serine/threonine to glutamic acid to mimic the phosphorylated state. By calcium phosphate transfection, mutant plasmids were introduced into C33A Rb-null cells, and apoptosis was induced using UV. Apoptosis was measured by ELISA detection of degraded DNA and by immunoblotting to assess proteolytic cleavage of PARP. Our results show that only mutation of threonine-821 to glutamic acid (T821E) blocked apoptosis by 50%, whereas other sites tested had little effect. In Rb-null Saos-2 and SKUT-1 cells, the T821E mutation also blocked apoptosis induced by the cdk inhibitor, Roscovitine, by 50%. In addition, we show that endogenous Rb is dephosphorylated on threonine-821 when cells are undergoing apoptosis. Thus, our data indicates that dephosphorylation of threonine-821 of Rb is required for cells to undergo apoptosis.  相似文献   

18.
The actin cytoskeleton has been found to be required for mitogen-stimulated cells to passage through the cell cycle checkpoint. Here we show that selective disruption of the actin cytoskeleton by dihydrocytochalasin B (H(2)CB) blocked the mitogenic effect in normal Swiss 3T3 cells, leading to cell cycle arrest at mid to late G(1) phase. Cells treated with H(2)CB remain tightly attached to the substratum and respond to mitogen-induced MAP kinase activation. Upon cytoskeleton disruption, however, growth factors fail to induce hyperphosphorylation of the retinoblastoma protein (pRb) and the pRb-related p107. While cyclin D1 induction and cdk4-associated kinase activity are not affected, induction of cyclin E expression and activation of cyclin E-cdk2 complexes are greatly inhibited in growth-stimulated cells treated with H(2)CB. The inhibition of cyclin E expression appears to be mediated at least in part at the RNA level and the inhibition of cdk2 kinase activity is also attributed to the decrease in cdk2 phosphorylation and proper subcellular localization. The expression patterns of cdk inhibitors p21 and p27 are similar in both untreated and H(2)CB-treated cells upon serum stimulation. In addition, the changes in subcellular localization of pRb and p107 appear to be linked to their phosphorylation states and disruption of normal actin structure affects nuclear migration of p107 during G(1)-to-S progression. Taken together, our results suggest that the actin cytoskeleton-dependent G(1) arrest is linked to the cyclin-cdk pathway. We hypothesize that normal actin structure may be important for proper localization of certain G(1) regulators, consequently modulating specific cyclin and kinase expression.  相似文献   

19.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号