首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Biocides are currently the primary mitigation method to control sulfate-reducing bacteria (SRB) in biofouling, reservoir souring and microbiologically influenced corrosion. Increasingly restrictive environmental regulations and safety concerns on biocide uses demand more efficient dosing of biocides. Chelators have been known to enhance antibiotics because of their properties such as increasing the permeability of the outer cell membrane of Gram-negative bacteria. Two readily biodegradable chelators, ethylenediaminedisuccinate (EDDS) and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA) disodium salts that are touted as potential replacements of ethylenediaminetetraacetic acid (EDTA), were evaluated as potential biocide enhancers for glutaraldehyde and tetrakis hydroxymethyl phosphonium sulfate (THPS) in their inhibition of planktonic SRB growth. Desulfovibrio vulgaris ATCC 7757 and Desulfovibrio desulfuricans ATCC 14563 were grown in modified ATCC 1249 medium and in enriched artificial seawater, respectively. Laboratory tests in 100 ml anaerobic vials showed that EDDS or HEIDA alone did not inhibit SRB growth. However, when EDDS or HEIDA was combined with glutaraldehyde or THPS, each of them enhanced the biocide inhibition of planktonic SRB growth.  相似文献   

2.
Sulfate-reducing bacteria (SRB) cause souring and their biofilms are often the culprit in Microbiologically Influenced Corrosion (MIC). The two most common green biocides for SRB treatment are tetrakis-hydroxymethylphosphonium sulfate (THPS) and glutaraldehyde. It is unlikely that there will be another equally effective green biocide in the market any time soon. This means more effective biocide treatment probably will rely on biocide cocktails. In this work a triple biocide cocktail consisting of glutaraldehyde or THPS, ethylenediaminedisuccinate (EDDS) and methanol was used to treat planktonic SRB and to remove established SRB biofilms. Desulfovibrio vulgaris (ATCC 7757), a corrosive SRB was used as an example in the tests. Laboratory results indicated that with the addition of 10–15% (v/v) methanol to the glutaraldehyde and EDDS double combination, mitigation of planktonic SRB growth in ATCC 1249 medium and a diluted medium turned from inhibition to a kill effect while the chelator dosage was cut from 2,000 to 1,000 ppm. Biofilm removal was achieved when 50 ppm glutaraldehyde combined with 15% methanol and 1,000 ppm EDDS was used. THPS showed similar effects when it was used to replace glutaraldehyde in the triple biocide cocktail to treat planktonic SRB.  相似文献   

3.
Biofilms of sulfate reducing bacteria (SRB) are often responsible for Microbiologically Influenced Corrosion (MIC) that is a major problem in the oil and gas industry as well as water utilities and other industries. This work was inspired by recent reports that some d-amino acids may be useful in the control of microbial biofilms. A d-amino acid mixture with equimolar d-tyrosine, d-methionine, d-tryptophan and d-leucine was tested in this work for their enhancement of a biocide cocktail containing tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and ethylenediamine-N,N’-disuccinic acid (EDDS). Desulfovibrio vulgaris (ATCC 7757) was cultured in ATCC 1249 medium. Its biofilm was grown on C1018 carbon steel coupons. Experimental results indicated that the triple biocide cocktail consisting of 30 ppm THPS, 500 ppm EDDS and 6.6 ppm d-amino acid mixture (with equimolar d-tyrosine, d-methionine, d-tryptophan and d-leucine) was far more effective than THPS and EDDS alone and their binary combination. The triple biocide cocktail effectively prevented SRB biofilm establishment and removed the established SRB biofilm. The d-amino acid mixture alone did not show significant effects in the two tasks even at 660 ppm.  相似文献   

4.

Three different types of biocides, viz. formaldehyde (FM), glutaraldehyde (GA) and isothiozolone (ITZ) were used to control planktonic and sessile populations of two marine isolates of sulphate‐reducing bacteria (SRB). The influence of these biocides on the initial attachment of cells to mild steel surfaces, on subsequent biofilm formation and on the activity of hydrogenase enzymes within developed biofilms was evaluated. In the presence of biocides the rate and degree of colonization of mild steel by SRB depended on incubation time, bacterial isolate and the type of biocide used. Although SRB differed in their susceptibility to biocides, for all isolates the biofilm population was more resistant to the treatment than the planktonic population. GA showed highest efficiency in controlling planktonic and sessile SRB compared with the other two biocides. The activity of the enzyme hydrogenase measured in SRB biofilms varied between isolates and with the biocide treatment. No correlation was found between the number of sessile cells and hydrogenase activity.  相似文献   

5.
6.
Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50–90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.  相似文献   

7.
This study was undertaken to determine the influence of temperature (20, 37, and 50°C) and pressure (1, 100 and 200 atm) on a strain of sulphate-reducing bacteria (SRB), isolated from an oil reservoir in Alaska. The effect of different concentrations (100, 200 and 500 ppm) of biocides isothiazolone (ITZ) and formaldehyde (FA) on planktonic population of SRB was tested in order to determine the efficacy of biocides under these conditions.The highest bacterial growth rate was 0.26±0.03 h−1 at 37°C under pressure of 100 atm. Statistical evaluation showed that although both temperature and pressure had exerted an effect on bacteria by significantly increasing their growth rate; temperature rather than pressure had greater influence on bacterial proliferation.The effectiveness of both FA and ITZ in controlling planktonic populations of SRB was comparable except at 37°C/200 atm, under which conditions FA proved to be more potent. The effectiveness of both biocides decreased with an increase in cell number, as observed at 37°C/100 atm.  相似文献   

8.
Quaternary ammonium compounds (QACs) represent widely used cationic biocides that persist in natural environments. Although microbial degradation, sensitivity and resistance to QACs have been extensively documented, a quantitative understanding of how whole communities adapt to QAC exposure remain elusive. To gain insights into these issues, we exposed a microbial community from a contaminated river sediment to varied levels of benzalkonium chlorides (BACs, a family of QACs) for 3 years. Comparative metagenomic analysis showed that the BAC‐fed communities were dramatically decreased in phylogenetic diversity compared with the control (no BAC exposure), resulting presumably from BAC toxicity, and dominated by Pseudomonas species (> 50% of the total). Time‐course metagenomics revealed that community adaptation occurred primarily via selective enrichment of BAC‐degrading Pseudomonas populations, particularly P. nitroreducens, and secondarily via amino acid substitutions and horizontal transfer of a few selected genes in the Pseudomonas populations, including a gene encoding a PAS/PAC sensor protein and ring‐hydroxylating dioxygenase genes. P. nitroreducens isolates were reproducibly recoverable from communities after prolonged periods of no‐BAC exposure, suggesting that they are robust BAC‐degraders. Our study provides new insights into the mechanisms and tempo of microbial community adaptation to QAC exposure and has implications for treating QACs in biological engineered systems.  相似文献   

9.
The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10–15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry.  相似文献   

10.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

11.
Microbiologically influenced corrosion (MIC) is a major problem in various industries such as oil and gas, and water utilities. Billions of dollars are lost to microbiologically influenced corrosion (MIC) each year in the US. The key to MIC control is biofilm mitigation. Sulfate-reducing bacteria (SRB) are often the culprits. They are also involved in souring and biofouling. SRB biofilms are notoriously difficult to eradicate. Due to environmental concerns and increasing costs, better biocide treatment strategies are desired. Recent studies suggested that D: -tyrosine and some other D: -amino acids may signal biofilm dispersal. Experimental results in this work indicated that D: -tyrosine is an effective biocide enhancer for tetrakis hydroxymethyl phosphonium sulfate (THPS) that is a green biocide. Desulfovibrio vulgaris (ATCC 7757) was used in biofilm prevention and biofilm removal tests. It was found that 100?ppm D: -tyrosine alone and 50?ppm THPS alone were both ineffective against the SRB biofilm. However, when 1?ppm D: -tyrosine was combined with 50?ppm THPS, the synergy between the two chemicals successfully prevented the establishment of the SRB biofilm on C1018 mild steel coupon surfaces in batch treatment tests. It also eradicated established SRB biofilms from coupon surfaces in both 1 and 3-h shock treatment tests.  相似文献   

12.
To identify novel, less-toxic compounds capable of inhibiting sulfate-reducing bacteria (SRB), Desulfovibrio vulgaris and Desulfovibrio gigas in suspension cultures were exposed to several antimicrobial peptides. The bacterial peptide antimicrobials gramicidin S, gramicidin D, and polymyxin B as well as the cationic peptides indolicidin and bactenecin from bovine neutrophils decreased the viability of both SRB by 90% after a 1-h exposure at concentrations of 25–100 μg ml−1. To reduce corrosion by inhibiting SRB in biofilms, the genes for indolicidin and bactenecin were expressed in Bacillus subtilisBE1500 and B. subtilis WB600 under the control of the constitutive alkaline protease (apr) promoter, and the antimicrobials were secreted into the culture medium using the apr signal sequence. Bactenecin was also synthesized and expressed as a fusion to the pro-region of barnase from Bacillus amyloliquefaciens. Concentrated culture supernatants of B. subtilis BE1500 expressing bactenecin at 3 μg ml−1 decreased the viability of Escherichia coli BK6 by 90% and the reference SRB D. vulgaris by 83% in suspension cultures. B. subtilis BE1500 and B. subtilis WB600 expressing bactenecin in biofilms also inhibited the SRB-induced corrosion of 304 stainless steel six to 12-fold in continuous reactors as evidenced by the lack of change in the impedance spectra (resistance polarization) upon addition of SRB and by the reduction in hydrogen sulfide and iron sulfide in batch fermentations with mild steel. A 36-fold decrease in the population of D. vulgaris in a B. subtilis BE1500 biofilm expressing bactenecin was also observed. This is the first report of an antimicrobial produced in a biofilm for in vivo applications and represents the first application of a beneficial, genetically-engineered biofilm for combating corrosion. Received 27 October 1998/ Accepted in revised form 21 February 1999  相似文献   

13.
A plant-transformation-competent binary BAC library was constructed from the genomic DNA of the chromosome 9 monosomic addition line of Beta corolliflora Zoss. in sugar beet (B. vulgaris. L). This monosomic addition line (designated M14) is characterized by diplosporic reproduction caused by the alien chromosome carrying the gene(s) responsible for diplospory. The library consists of 49,920 clones with an average insert size of 127 kb, representing approximately 7.5 haploid genome equivalents and providing a greater than 99% probability of isolating a single-copy DNA sequence from the library. To develop the scaffold of a physical map for the alien chromosome, B. corolliflora genome-specific dispersed repetitive DNA sequences were used as probes to isolate BAC clones derived from the alien chromosome in the library. A total of 2,365 positive clones were obtained and arrayed into a sublibrary specific for B. corolliflora chromosome 9 (designated bcBAC-IX). The bcBAC-IX sublibrary was further screened with a subtractive cDNA pool generated from the ovules of M14 and the floral buds of B. vulgaris by the suppression subtractive hybridization method. One hundred and three positive binary BACs were obtained, which potentially contain the genes of the alien chromosome specifically expressed during the ovule and embryo development of M14, and may be associated with apomictic reproduction. Thus, these binary BAC clones will be useful for identification of the genes for apomixis by genetic transformation.Communicated by H. C. Becker  相似文献   

14.
Liu D  Dong H  Bishop ME  Zhang J  Wang H  Xie S  Wang S  Huang L  Eberl DD 《Geobiology》2012,10(2):150-162
Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate‐reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu‐2, mixed‐layer illite‐smectite RAr‐1 and ISCz‐1, and illite IMt‐1) were exposed to D. vulgaris in a non‐growth medium with and without anthraquinone‐2,6‐disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X‐ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals.  相似文献   

15.
Real-time polymerase chain reaction (PCR) is considered a highly sensitive method for the quantification of microbial organisms in environmental samples. This study was conducted to evaluate real-time PCR with SybrGreen detection as a quantification method for sulfate-reducing bacteria (SRB) in industrial wastewater produced by several chemical industries. We designed four sets of primers and developed standard curves based on genomic DNA of Desulfovibrio vulgaris from pure culture and on plasmids containing dissimilatory sulfate reductase (dsrA) or adenosine-5′-phosphosulfate reductase (apsA) genes of SRB. All the standard curves, two for dsrA and two for apsA genes, had a linear range between 0.95 × 102 and 9.5 × 106 copies/μL and between 1.2 × 103 and 1.2 × 107 copies/μL, respectively. The theoretical copy numbers of the tenfold dilutions of D. vulgaris genomic DNA were best estimated (between 2.7 to 10.5 times higher than theoretical numbers) by the standard curve with DSR1F and RH3-dsr-R primers. To mimic the effect of foreign DNA in environmental samples, serial dilutions of D. vulgaris genomic DNA were mixed with Escherichia coli chromosomal DNA (40 ng per assay). This influenced neither PCR amplification nor the quantification of target DNA. Industrial wastewater was sampled during a 15-month period and analyzed for the presence of SRB, based on dsrA gene amplification. SRB displayed a higher abundance during the summer (about 107–108 targets mL−1) and lower during the winter (about 104–105 targets mL−1). The results indicate that our real-time PCR approach can be used for detection of uncultured SRB and will provide valuable information related to the abundance of SRB in durable environmental samples, such as complex and saline industrial wastewaters.  相似文献   

16.

Background

Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes.

Results

Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30 % of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome.

Conclusions

Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20 %.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1698-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
In batch and continuous fermentations, the reduction in corrosion of SAE 1018 mild steel and 304 stainless steel caused by inhibition of the reference sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris by a protective, antimicrobial-producing Bacillus brevis biofilm was investigated. The presence of D. vulgaris produced a thick black precipitate on mild steel and a higher corrosion rate in batch cultures than that seen in a mono-culture of non-antimicrobial-producing Pseudomonas fragi K upon the addition of SRB to the aerobic P. fragi K biofilm. In continuous reactors, the polarization resistance R p decreased for stainless steel and increased for mild steel upon the addition of SRB to a P. fragi K biofilm. Addition of either 200 μg/ml ampicillin, chloramphenicol, or ammonium molybdate to batch and continuous reactors after SRB had colonized the metal was ineffective in killing SRB, as inferred from the lack of change in both R p and the impedance spectra. However, when ampicillin was added prior to SRB colonization, the growth of SRB was completely inhibited on stainless steel in continuous reactors. Prior addition of ampicillin was only able to delay the growth of SRB on mild steel in continuous reactors. External addition of the purified peptide antimicrobial agent gramicidin S prior to the addition of SRB also inhibited the growth of SRB on stainless steel in continuous reactors, and the SRB were also inhibited on stainless steel in both batch and continuous reactors by producing gramicidin S in situ in a protective biofilm when the gramicidin-S-overproducing strain Bacillus brevis 18 was used. Received: 29 October 1998 / Received revision: 18 February 1999 / Accepted: 26 February 1999  相似文献   

18.
19.
Common bean (Phaseolus vulgaris L.) is a legume that is an important source of dietary protein in developing countries throughout the world. Utilizing the G19833 BAC library for P. vulgaris from Clemson University, 89,017 BAC-end sequences were generated giving 62,588,675 base pairs of genomic sequence covering approximately 9.54% of the genome. Analysis of these sequences in combination with 1,404 shotgun sequences from the cultivar Bat7 revealed that approximately 49.2% of the genome contains repetitive sequence and 29.3% is genic. Compared to other legume BAC-end sequencing projects, it appears that P. vulgaris has higher predicted levels of repetitive sequence, but this may be due to a more intense identification strategy combining both similarity-based matches as well as de novo identification of repeats. In addition, fingerprints for 41,717 BACs were obtained and assembled into a draft physical map consisting of 1,183 clone contigs and 6,385 singletons with ~9x coverage of the genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号