首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pramanik A  Olsson M  Langel U  Bartfai T  Rigler R 《Biochemistry》2001,40(36):10839-10845
Fluorescence correlation spectroscopy (FCS) allows the study of interactions of fluorescently labeled ligand with receptors in living cells at single-molecule detection sensitivity. From the autocorrelation functions of fluorescence intensity fluctuations, the diffusion time of molecules through the confocal volume is analyzed, and from that, the molecular weights of free and bound molecules can be calculated. We have applied FCS to study the receptor diversity for the neuropeptide galanin (GAL) in cultured cells. FCS measurement of the fluorophore rhodamine-labeled GAL (Rh-GAL) has been performed in 0.2-fL confocal volume elements of the laser beam. The analysis of autocorrelation functions of Rh-GAL in solution above cells and at cell membranes demonstrates that the diffusion time of unbound Rh-GAL is 0.16 ms, whereas diffusion times of membrane-bound Rh-GAL are 22 and 700 ms. Because both of the diffusion times (22 and 700 ms) are much longer as compared to that of unbound Rh-GAL, they correspond to slow-diffusing complexes when Rh-GAL is bound to the cell membranes. Addition of excess nonlabeled GAL is accompanied by competitive displacement. Full saturation of the GAL binding is obtained at nanomolar concentrations. Scatchard analysis of binding data reveal one binding process, assuming one binding site per Rh-GAL (n = 1). On the other hand, the appearance of two diffusion times, 22 and 700 ms, suggests the existence of two subpopulations of GAL receptor complexes or two subtypes of GAL receptor not detected before. This makes an important point that FCS permits the identification of receptors, which were not possible to detect before by conventional binding techniques. The inhibitory effect of pertussis toxin on the GAL binding considers a G-protein-involved allosteric system, important for the clarification of essential steps in the G-protein-related signal transduction. This study is of pharmaceutical significance, since it will provide insights into how FCS can be used as a rapid technique for studying ligand-receptor interactions in living cells, which is one step forward for large-scale drug screening in cell cultures.  相似文献   

2.
近场光学显微镜具有nm量级的空间分辨率,量子点(quantum dots,QDs)荧光探针具有激发谱宽、发射谱线窄、荧光强度高、抗光漂白和稳定性高等优点,两者结合用于生物大分子的成像探测和识别具有广泛的应用前景。用近场光学显微镜对链霉亲和素偶联的QDs进行近场荧光激发,并对其荧光发射特性和光稳定性进行研究,结果表明:近场光学显微镜nm量级的空间分辨率,可以同时观察到了QDs的单体、二聚体和三聚体;QDs的荧光发射强度高,近场荧光像对比度好,单量子点的荧光半高宽达到25nm;对一定入射波长的单色激发光,QDs的近场荧光强度随着激发功率密度的增加线性增加,并很快趋于稳定。与传统的荧光染料如异硫氰酸荧光素相比,QDs的稳定性非常好,在激发功率密度为300W/cm2的近场辐射下,量子点的荧光强度超过6h基本保持不变,其抗光漂白能力远远高于普通荧光染料。  相似文献   

3.
Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion constants. In the standard case, fluorescence fluctuations are measured in an open detection volume defined by the confocal optics. However, if FCS measurements are carried out in cellular processes that confine the detection volume, the standard FCS model leads to erroneous results. In this paper, we derive a modified FCS model that takes into account the confinement of the detection volume. Using this model, we have carried out the first FCS measurements in dendrites of cultured neurons. We further derive, for the case of confined diffusion, the limits within which the standard two- and three-dimensional diffusion models give reliable results.  相似文献   

4.
Scanning near-field optical microscopy (SNOM) circumvents the diffraction limit of conventional light microscopy and is able to achieve optical resolutions substantially below 100 nm. However, in the field of cell biology SNOM has been rarely applied, probably because previous techniques for sample-distance control are less sensitive in liquid than in air. Recently we developed a distance control based on a tuning fork in tapping mode, which is also well-suited for imaging in solution. Here we show that this approach can be used to visualize single membrane protein complexes kept in physiological media throughout. Nuclear envelopes were isolated from Xenopus laevis oocytes at conditions shown recently to conserve the transport functions of the nuclear pore complex (NPC). Isolated nuclear envelopes were fluorescently labeled by antibodies against specific proteins of the NPC (NUP153 and p62) and imaged at a resolution of approximately 60 nm. The lateral distribution of epitopes within the supramolecular NPC could be inferred from an analysis of the intensity distribution of the fluorescence spots. The different number densities of p62- and NUP153-labeled NPCs are determined and discussed. Thus we show that SNOM opens up new possibilities for directly visualizing the transport of single particles through single NPCs and other transporters.  相似文献   

5.
Near-field optical imaging of abasic sites on a single DNA molecule   总被引:1,自引:0,他引:1  
Kim J  Muramatsu H  Lee H  Kawai T 《FEBS letters》2003,555(3):611-615
Scanning near-field optical microscopy (SNOM) imaging was performed to allow for the direct visualization of damaged sites on individual DNA molecules to a scale of a few tens of nanometers. Fluorescence in situ hybridization on extended DNA molecules was modified to detect a single abasic site. Abasic sites were specifically labelled with a biotinlylated aldehyde-reactive probe and fluorochrome-conjugated streptavidin. By optimizing the performance of the SNOM technique, we could obtain high contrast near-field optical images that enabled high-resolution near-field fluorescence imaging using optical fiber probes with small aperture sizes. High-resolution near-field fluorescence imaging demonstrated that two abasic sites within a distance of 120 nm are clearly obtainable, something which is not possible using conventional fluorescence in situ hybridization combined with far-field fluorescence microscopy.  相似文献   

6.
Fluorescence assay technologies used for miniaturized high throughput screening are broadly divided into two classes. Macroscopic fluorescence techniques (encompassing conventional fluorescence intensity, anisotropy [also often referred to as fluorescence polarization] and energy transfer) monitor the assay volume- and time-averaged fluorescence output from the ensemble of emitting fluorophores. In contrast, single-molecule detection (SMD) techniques and related approaches, such as fluorescence correlation spectroscopy (FCS), stochastically sample the fluorescence properties of individual constituent molecules and only then average many such detection events to define the properties of the assay system as a whole. Analysis of single molecular events is accomplished using confocal optics with an illumination/detection volume of approximately 1 fl (10(-15) L) such that the signal is insensitive to miniaturization of HTS assays to 1 μl or below. In this report we demonstrate the general applicability of one SMD technique (FCS) to assay configuration for target classes typically encountered in HTS and confirm the equivalence of the rate/equilibrium constants determined by FCS and by macroscopic techniques. Advantages and limitations of the current FCS technology, as applied here, and potential solutions, particularly involving alternative SMD detection techniques, are also discussed.  相似文献   

7.
BackgroundHigh-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.MethodsScanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.ResultsIn tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.ConclusionsThis study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.General significanceWe achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.  相似文献   

8.
The infrared (IR) absorption of a biological system can potentially report on fundamentally important microchemical properties. For example, molecular IR profiles are known to change during increases in metabolic flux, protein phosphorylation, or proteolytic cleavage. However, practical implementation of intracellular IR imaging has been problematic because the diffraction limit of conventional infrared microscopy results in low spatial resolution. We have overcome this limitation by using an IR spectroscopic version of scanning near-field optical microscopy (SNOM), in conjunction with a tunable free-electron laser source. The results presented here clearly reveal different chemical constituents in thin films and biological cells. The space distribution of specific chemical species was obtained by taking SNOM images at IR wavelengths (lambda) corresponding to stretch absorption bands of common biochemical bonds, such as the amide bond. In our SNOM implementation, this chemical sensitivity is combined with a lateral resolution of 0.1 micro m ( approximately lambda/70), well below the diffraction limit of standard infrared microscopy. The potential applications of this approach touch virtually every aspect of the life sciences and medical research, as well as problems in materials science, chemistry, physics, and environmental research.  相似文献   

9.
Hess ST  Webb WW 《Biophysical journal》2002,83(4):2300-2317
Fluorescence correlation spectroscopy (FCS) can provide a wealth of information about biological and chemical systems on a broad range of time scales (<1 micros to >1 s). Numerical modeling of the FCS observation volume combined with measurements has revealed, however, that the standard assumption of a three-dimensional Gaussian FCS observation volume is not a valid approximation under many common measurement conditions. As a result, the FCS autocorrelation will contain significant, systematic artifacts that are most severe with confocal optics when using a large detector aperture and aperture-limited illumination. These optical artifacts manifest themselves in the fluorescence correlation as an apparent additional exponential component or diffusing species with significant (>30%) amplitude that can imply extraneous kinetics, shift the measured diffusion time by as much as approximately 80%, and cause the axial ratio to diverge. Artifacts can be minimized or virtually eliminated by using a small confocal detector aperture, underfilled objective back-aperture, or two-photon excitation. However, using a detector aperture that is smaller or larger than the optimal value (approximately 4.5 optical units) greatly reduces both the count rate per molecule and the signal-to-noise ratio. Thus, there is a tradeoff between optimizing signal-to-noise and reducing experimental artifacts in one-photon FCS.  相似文献   

10.
We explore the potential of a supercritical angle (SA) objective for fluorescence correlation spectroscopy (FCS). This novel microscope objective combines tight focusing by an aspheric lens with strong axial confinement of supercritical angle fluorescence collection by a parabolic mirror lens, resulting in a small detection volume. The tiny axial extent of the detection volume features an excellent surface sensitivity, as is demonstrated by diffusion measurements in model membranes with an excess of free dye in solution. All SA-FCS measurements are directly compared to standard confocal FCS, demonstrating a clear advantage of SA-FCS, especially for diffusion measurements in membranes. We present an extensive theoretical framework that allows for accurate and quantitative evaluation of the SA-FCS correlation curves.  相似文献   

11.
In this paper we present recent single molecule detection experiment using a solid immersion lens (SIL) for fluorescent correlation spectroscopy measurements. We compared the performance of the SIL in combination with an air objective (40x, numerical aperture (NA)=1.15) with a water immersion objective (40x, NA=0.6) in a confocal microscope system (ConfoCorr 1). Important parameters for single molecule experiments such as collection efficiency and excitation field confinement were investigated. Although the two set-ups have similar numerical aperture the measurements demonstrated higher field confinement and better collection efficiency for the SIL system in comparison to the conventional confocal set-up. Adding spherical aberrations shifts the sample volume up to 4 microm away from the plane surface of the SIL and conserves a diffraction limited focal volume. In this case the FCS autocorrelation demonstrates a free 3D diffusion of dye molecules in a highly confined light field.  相似文献   

12.
扫描近场光学显微镜突破衍射极限,具有纳米量级的空间分辨率,量子点(QD s)标记有荧光强度高且抗光漂白能力强等优点。结合上述两种技术,对人胃腺癌SGC-7901细胞膜表面特异性结合的叶酸受体(FR)进行成像探测,获得了叶酸受体在SGC-7901细胞膜表面上的分布,以及细胞内化外源性叶酸过程中叶酸受体在细胞膜表面的分布变化,成像的光学分辨率达到120 nm。实验结果表明:特异性结合的叶酸受体在SGC-7901细胞膜表面的分布,绝大部分是以聚集体的形式存在。随着SGC-7901细胞内化叶酸量的增加,叶酸受体在细胞膜表面的分布密度逐渐降低,并在经过120 m in左右趋于稳定。上述方法和手段为实现单细胞水平上靶点分布和变化的长期监测,肿瘤细胞内化受体的机制研究提供了新的技术途径。  相似文献   

13.
We develop an extension of fluorescence correlation spectroscopy (FCS) using a spinning disk confocal microscope. This approach can spatially map diffusion coefficients or flow velocities at up to approximately 10(5) independent locations simultaneously. Commercially available cameras with frame rates of 1000 Hz allow FCS measurements of systems with diffusion coefficients D~10(-7) cm(2)/s or smaller. This speed is adequate to measure small microspheres (200-nm diameter) diffusing in water, or hindered diffusion of macromolecules in complex media (e.g., tumors, cell nuclei, or the extracellular matrix). There have been a number of recent extensions to FCS based on laser scanning microscopy. Spinning disk confocal microscopy, however, has the potential for significantly higher speed at high spatial resolution. We show how to account for a pixel size effect encountered with spinning disk confocal FCS that is not present in standard or scanning FCS, and we introduce a new method to correct for photobleaching. Finally, we apply spinning disk confocal FCS to microspheres diffusing in Type I collagen, which show complex spatially varying diffusion caused by hydrodynamic and steric interactions with the collagen matrix.  相似文献   

14.
《Biophysical journal》2021,120(19):4230-4241
Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.  相似文献   

15.
The paper reviews computational models for plasmonic field enhancement, especially with applications to tip-enhanced scanning near-field optical microscopy (SNOM). Both plasmon-enhanced and scattering-type SNOM are considered. The importance of full electrodynamic analysis is emphasized: the electrostatic treatment is valid only if the size of the whole system, rather than its individual components (such as the apex of the tip or an individual particle in a cluster), is much smaller than the wavelength. Illustrative numerical results are included.  相似文献   

16.
Photosystem II core complex (PSII CC) absorbs light energy and triggers a series of electron transfer reactions by oxidizing water while producing molecular oxygen. Synthetic lipids with different alkyl chains and spacer lengths bearing functionalized headgroups were specifically designed to bind the Q(B) site and to anchor this large photosynthetic complex (240 kDa) in order to attempt two-dimensional crystallization. Among the series of different compounds that have been tested, oxygen evolution measurements have shown that dichlorophenyl urea (DCPU) binds very efficiently to the Q(B) site of PSII CC, and therefore, that moiety has been linked covalently to the headgroup of synthetic lipids. The analysis of the monolayer behavior of these DCPU-lipids has allowed us to select ones bearing long spacers for the anchoring of PSII CC. Oxygen evolution measurements demonstrated that these long-spacer DCPU-lipids specifically bind to PSII CC and inhibit electron transfer. With the use of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM), it was possible to visualize domains of PSII CC bound to DCPU-lipid monolayers. SNOM imaging has enabled us to confirm that domains observed by AFM were composed of PSII CC. Indeed, the SNOM topography images presented similar domains as those observed by AFM, but in addition, it allowed us to determine that these domains are fluorescent. Electron microscopy of these domains, however, has shown that the bound PSII CC was not crystalline.  相似文献   

17.
We report theoretical predictions and experimental observations of the reduced detection volume with the use of surface-plasmon-coupled emission (SPCE). The effective fluorescence volume (detection volume) in SPCE experiments depends on two near-field factors: the depth of evanescent wave excitation and a distance-dependent coupling of excited fluorophores to the surface plasmons. With direct excitation of the sample (reverse Kretschmann excitation) the detection volume is restricted only by the distance-dependent coupling of the excitation to the surface plasmons. However, with the excitation through the glass prism at surface plasmon resonance angle (Kretschmann configuration), the detection volume is a product of evanescent wave penetration depth and distance-dependent coupling. In addition, the detection volume is further reduced by a metal quenching of excited fluorophores at a close proximity (below 10nm). The height of the detected volume size is 40-70nm, depending on the orientation of the excited dipoles. We show that, by using the Kretschmann configuration in a microscope with a high-numerical-aperture objective (1.45) together with confocal detection, the detection volume can be reduced to 1-2attoL. The strong dependence of the coupling to the surface plasmons on the orientation of excited dipoles can be used to study the small conformational changes of macromolecules.  相似文献   

18.
Picosecond multiphoton scanning near-field optical microscopy.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have implemented simultaneous picosecond pulsed two- and three-photon excitation of near-UV and visible absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 1064-nm emission from a pulsed Nd:YVO4 laser was used to excite the visible mitochondrial specific dye MitoTracker Orange CM-H2TMRos or a Cy3-labeled antibody by two-photon excitation, and the UV absorbing DNA dyes DAPI and the bisbenzimidazole BBI-342 by three-photon excitation, in a shared aperture SNOM using uncoated fiber tips. Both organelles in human breast adenocarcinoma cells (MCF 7) and specific protein bands on polytene chromosomes of Drosophila melanogaster doubly labeled with a UV and visible dye were readily imaged without photodamage to the specimens. The fluorescence intensities showed the expected nonlinear dependence on the excitation power over the range of 5-40 mW. An analysis of the dependence of fluorescence intensity on the tip-sample displacement normal to the sample surface revealed a higher-order function for the two-photon excitation compared to the one-photon mode. In addition, the sample photobleaching patterns corresponding to one- and two-photon modes revealed a greater lateral confinement of the excitation in the two-photon case. Thus, as in optical microscopy, two-photon excitation in SNOM is confined to a smaller volume.  相似文献   

19.
Burghardt TP  Ajtai K  Borejdo J 《Biochemistry》2006,45(13):4058-4068
Confocal microscopy is widely used for acquiring high spatial resolution tissue sample images of interesting fluorescent molecules inside cells. The fluorescent molecules are often tagged proteins participating in a biological function. The high spatial resolution of confocal microscopy compared to wide field imaging comes from an ability to optically isolate and image exceedingly small volume elements made up of the lateral (focal plane) and depth dimensions. Confocal microscopy at the optical diffraction limit images volumes on the order of approximately 0.5 femtoliter (10(-15) L). Further resolution enhancement can be achieved with total internal reflection microscopy (TIRM). With TIRM, an exponentially decaying electromagnetic field (near-field) established on the surface of the sample defines a subdiffraction limit dimension that, when combined with conventional confocal microscopy, permits image formation from <7 attoL (10(-18) L) volumes [Borejdo et al. (2006) Biochim. Biophys. Acta, in press]. Demonstrated here is a new variation of TIRM, focused TIRM (fTIRM) that decreases the volume element to approximately 3 attoL. These estimates were verified experimentally by measuring characteristic times for Brownian motion of fluorescent nanospheres through the volume elements. A novel application for TIRM is in situ single-molecule fluorescence spectroscopy. Single-molecule studies of protein structure and function are well-known to avoid the ambiguities introduced by ensemble averaging. In situ, proteins are subjected to the native forces of the crowded environment in the cell that are not present in vitro. The attoL fluorescence detection volume of TIRM permits isolation of single proteins in situ. Muscle tissue contains myosin at a approximately 120 microM concentration. Evidence is provided that >75% of the bleachable fluorescence detected with fTIRM is emitted by five chromophore-labeled myosins in a muscle fiber.  相似文献   

20.
A better knowledge of biochemical and structural properties of human chromosomes is important for cytogenetic investigations and diagnostics. Fluorescence in situ hybridization (FISH) is a commonly used technique for the visualization of chromosomal details. Localizing specific gene probes by FISH combined with conventional fluorescence microscopy has reached its limit. Also, microdissecting DNA from G-banded human metaphase chromosomes by either a glass tip or by laser capture needs further improvement. By both atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM), local information from G-bands and chromosomal probes can be obtained. The final resolution allows a more precise localization compared to standard techniques, and the extraction of very small amounts of chromosomal DNA by the scanning probe is possible. Besides new strategies towards a better G-band and fluorescent probe detection, this study is focused on the combination of biochemical and nanomanipulation techniques which enable both nanodissection and nanoextraction of chromosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号