首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphate starvation leads to a strong reduction in shoot growth and yield in crops. The reduced shoot growth is caused by extensive gene expression reprogramming triggered by phosphate deficiency, which is not itself a direct consequence of low levels of shoot phosphorus. However, how phosphate starvation inhibits shoot growth in rice is still unclear. In this study, we determined the role of OsCYCP4s in the regulation of shoot growth in response to phosphate starvation in rice. We demonstrate that the expression levels of OsCYCP4s, except OsCYCP4;3, were induced by phosphate starvation. Overexpression of the phosphate starvation induced OsCYCP4s could compete with the other cyclins for the binding with cyclin‐dependent kinases, therefore suppressing growth by reducing cell proliferation. The phosphate starvation induced growth inhibition in the loss‐of‐function mutants cycp4;1, cycp4;2, and cycp4;4 is partially compromised. Furthermore, the expression of some phosphate starvation inducible genes is negatively modulated by these cyclins, which indicates that these OsCYCP4s may also be involved in phosphate starvation signaling. We conclude that phosphate starvation induced OsCYCP4s might coordinate phosphate starvation signaling and cell cycle progression under phosphate starvation stress.  相似文献   

2.
《Autophagy》2013,9(5):731-738
Autophagy is essential for prolonging yeast survival during nutrient deprivation; however, this report shows that some autophagy proteins may also be accelerating population death in those conditions. While leucine starvation caused YCA1-mediated apoptosis characterized by increased annexin V staining, nitrogen deprivation triggered necrotic death characterized by increased propidium iodide uptake. Although a Δatg8 strain died faster than its parental strain during nitrogen starvation, this mutant died slower than its parent during leucine starvation. Conversely, a Δatg11 strain died slower than its parent during nitrogen starvation, but faster during leucine starvation. Curiously, although GFP-Atg8 complemented the Δatg8 mutation, this protein made ATG8 cells more sensitive to nitrogen starvation, and less sensitive to leucine starvation. These results were difficult to explain if autophagy only extended life but could be an indication that a second form of autophagy could concurrently facilitate either apoptotic or necrotic cell death.  相似文献   

3.
Macroautophagy/autophagy is a self-degradation process that combats starvation. Lipids are the main energy source in kidney proximal tubular cells (PTCs). During starvation, PTCs increase fatty acid (FA) uptake, form intracellular lipid droplets (LDs), and hydrolyze them for use. The involvement of autophagy in lipid metabolism in the kidney remains largely unknown. Here, we investigated the autophagy-mediated regulation of renal lipid metabolism during prolonged starvation using PTC-specific Atg5-deficient (atg5-TSKO) mice and an in vitro serum starvation model. Twenty-four h of starvation comparably induced LD formation in the PTCs of control and atg5-TSKO mice; however, additional 24 h of starvation reduced the number of LDs in control mice, whereas increases were observed in atg5-TSKO mice. Autophagic degradation of LDs (lipophagy) in PTCs was demonstrated by electron microscopic observation and biochemical analysis. In vitro pulse-chase assays demonstrated that lipophagy mobilizes FAs from LDs to mitochondria during starvation, whereas impaired LD degradation in autophagy-deficient PTCs led to decreased ATP production and subsequent cell death. In contrast to the in vitro assay, despite impaired LD degradation, kidney ATP content was preserved in 48-h starved atg5-TSKO mice, probably due to increased utilization of ketone bodies. This compensatory mechanism was accompanied by a higher plasma FGF21 (fibroblast growth factor 21) level and its expression in the PTCs; however, this was not essential for the production of ketone bodies in the liver during prolonged starvation. In conclusion, lipophagy combats prolonged starvation in PTCs to avoid cellular energy depletion.  相似文献   

4.
Various physiological stimuli trigger the conversion of noninfective Leishmania donovani promastigotes to the infective form. Here, we present the first evidence of the effect of glucose starvation, on virulence and survival of these parasites. Glucose starvation resulted in a decrease in metabolically active parasites and their proliferation. However, this was reversed by supplementation of gluconeogenic amino acids. Glucose starvation induced metacyclogenesis and enhanced virulence through protein kinase A regulatory subunit (LdPKAR1) mediated autophagy. Glucose starvation driven oxidative stress upregulated the antioxidant machinery, culminating in increased infectivity and greater parasitic load in primary macrophages. Interestingly, phosphoenolpyruvate carboxykinase (LdPEPCK), a gluconeogenic enzyme, exhibited the highest activity under glucose starvation to regulate growth of L. donovani by alternatively utilising amino acids. Deletion of LdPEPCK (Δpepck) decreased virulent traits and parasitic load in primary macrophages but increased autophagosome formation in the mutant parasites. Furthermore, Δpepck parasites failed to activate the Pentose Phosphate Pathway shunt, abrogating NADPH/NADP+ homoeostasis, conferring increased susceptibility towards oxidants following glucose starvation. In conclusion, this study showed that L. donovani undertakes metabolic rearrangements via gluconeogenesis under glucose starvation for acquiring virulence and its survival in the hostile environment.  相似文献   

5.
Energy homeostasis is an essential characteristic of all organisms, requiring fluctuation in energy accumulation, mobilization, and exchange with the external environment. In insects, energy mobilization is under control of the lipase brummer (bmm), which regulates nutritional status by hydrolyzing the ester bonds in triacylglycerol (TAG). In the present study, we investigated the role of bmm in the lipid mobilization and starvation resistance in the brown planthopper (BPH; Nilaparvata lugens), which is economically one of the most important rice pests in Asia. A severe decrease in TAG and glyceride contents was observed in the starved BPHs, while there was a partial rescue after refeeding. The starvation condition caused a significant increase in the expression levels of Nlbmm, and supplement of food after starvation dramatically reduced the Nlbmm expression. Sucrose rescue after starvation significantly suppressed the expression of Nlbmm, while caused an accumulation of TAG and glyceride. Knockdown of Nlbmm by double‐stranded RNA treatment extended the lifespan to starvation, whereas it increased the level of TAG and glyceride in the BPHs. The decreased lipolysis rate by dsNlbmm‐treated BPHs eventually resulted in increase of starvation resistance. These data demonstrated that the regulation of energy homeostasis by Nlbmm affects starvation resistance, probably through lipid mobilization control in N. lugens.  相似文献   

6.
Bacteria undergoing nutrient starvation induce the ubiquitous stringent response, resulting in gross physiological changes that reprograms cell metabolism from fast to slow growth. The stringent response is mediated by the secondary messengers pppGpp and ppGpp collectively referred to as (p)ppGpp or ‘alarmone’. In Escherichia coli, two paralogs, RelA and SpoT, synthesize (p)ppGpp. RelA is activated by amino acid starvation, whereas SpoT, which can also degrade (p)ppGpp, responds to fatty acid (FA), carbon and phosphate starvation. Here, we discover that FA starvation leads to rapid activation of RelA and reveal the underlying mechanism. We show that FA starvation leads to depletion of lysine that, in turn, leads to the accumulation of uncharged tRNALys and activation of RelA. SpoT was also activated by FA starvation but to a lower level and with a delayed kinetics. Next, we discovered that pyruvate, a precursor of lysine, is depleted by FA starvation. We also propose a mechanism that explains how FA starvation leads to pyruvate depletion. Together our results raise the possibility that RelA may be a major player under many starvation conditions previously thought to depend principally on SpoT. Interestingly, FA starvation provoked a ~100‐fold increase in relA dependent ampicillin tolerance.  相似文献   

7.
Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, promoting the association with beneficial microorganisms, but also affecting plant interactions with harmful organisms. They are also plant hormones in-planta, acting as modulators of plant responses under nutrient-deficient conditions, mainly phosphate (Pi) starvation. In the present work, we investigate the potential role of SLs as regulators of early Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2′-epi-GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and wheat under Pi deprivation. 2′-epi-GR24 application also increased SL production and the expression of Pi starvation markers under normal Pi conditions, being its effect dependent on the endogenous SL levels. Remarkably, 2′-epi-GR24 also impacted the root metabolic profile under these conditions, promoting the levels of metabolites associated to plant responses to Pi limitation, thus partially mimicking the pattern observed under Pi deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the results, we propose that SLs may act as early modulators of plant responses to P starvation.  相似文献   

8.
Changes in the biochemical properties of Micrococcus luteus cells were studied during the transition to a dormant state after incubation in an extended stationary phase. The overall DNA content after 150 days of starvation was similar to its initial level, while the RNA content decreased by 50%. Total lipids and protein, phospholipids and membrane proteins declined rapidly within the first 1–10 days of starvation. After 180 days of starvation, cells contained 43% of the protein and 35% of the lipid initially present. Starvation for 120 days resulted in the loss of phosphatidylglycerol and, to some extent, of phosphatidylinositol, giving a membrane whose phospholipids consisted mainly of cardiolipin. The membrane fluidity declined during starvation, as judged by diphenyl hexatriene fluorescence anisotropy measurements. Oxidase activities declined to zero within the first 20–30 days of starvation, while the dehydrogenases and cytochromes were more stable. The activities of some cytoplasmic enzymes were lost very rapidly, while NADPH-linked isocitrate dehydrogenase had 30% of its initial activity after 120 days of starvation. For all parameters tested there were significant fluctuations during the first 10–20 days of starvation, which may reflect cryptic growth in the culture.Abbreviations MPN Most probable number - DPH Diphenyl hexatriene  相似文献   

9.
The effect of starvation and subsequent re‐feeding to satiation on compensatory growth performance, insulin and blood serum values were investigated in juvenile Persian sturgeon (Acipencer persicus) with an average weight 108.04 ± 0.28 g (mean ± SEM) and in the same rearing condition over an 8‐week period. Sturgeons were allocated to one of five feeding treatments: controls (C, continuous feeding), W1 (1 week starvation), W2 (2 weeks starvation), W3 (3 weeks starvation) and W4 (4 weeks starvation), followed by a single 4 weeks of re‐feeding to satiation. Changes in growth performance and blood serum indices were examined at the end of weeks 4 and 8. Body weight, specific growth rate (SGR), condition factor (CF) and weight gain were determined to have significantly decreased during starvation. Fish starved for 1 week reached the same weight as the control fish after re‐feeding for 4 weeks, indicating that complete compensatory growth occurred. Although the specific growth rate in W2, W3 and W4 fish was greater than that in the control fish after re‐feeding, W2, W3 and W4 fish did not reach the same body weight as control fish at the end of re‐feeding period, and showed partial compensation only. Blood plasma, glucose and insulin concentrations did not change significantly during starvation and re‐feeding (P > 0.05). This suggests that sturgeon are able to maintain glycaemia during starvation, probably due to their non‐carbohydrate dietary source. Plasma total lipid and triglyceride levels increased in starvation treatments, whereas the increases were significant only in W3 treatment (P < 0.05). After a 4‐week re‐feeding period, their levels decreased in comparison to the starvation periods. Increases in plasma total lipid and triglyceride levels appear to be due to their roles as preferred nutrients for mobilization in Persian sturgeon and the magnitude and duration of compensatory growth depended on the length of food deprivation.  相似文献   

10.
Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non‐phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid‐to‐galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum‐localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2‐overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.  相似文献   

11.
Iron starvation induced marked increases in flavodoxin abundance and decreases in light-saturated and light-limited photosynthesis rates in the diatom Chaetoceros muelleri. Consistent with the substitution of flavodoxin for ferredoxin as an early response to iron starvation, increases of flavodoxin abundance were observed before declines of cell division rate or chl a specific photosynthesis rates. Changes in the abundance of flavodoxin after the addition of iron to iron-starved cells indicated that flavodoxin was not actively degraded under iron-replete conditions. Greater declines in light-saturated oxygen evolution rates than dark oxygen consumption rates indicated that the mitochondrial electron transfer chain was not affected as greatly by iron starvation as the photosynthetic electron transfer chain. The carbon:nitrogen ratio was unaffected by iron starvation, suggesting that photosynthetic electron transfer was a primary target of iron starvation and that reductions in nitrate assimilation were due to energy limitation (the C:N ratio would be expected to rise under nitrogen-limited but energy-replete conditions). Parallel changes were observed in the maximum light-saturated photosynthesis rate and the light-limited initial slope of the photosynthesis-light curve during iron starvation and recovery. The lowest photosynthesis rates were observed in iron-starved cells and the highest values in iron-replete cells. The light saturation parameter, Ik, was not affected by iron starvation, nor was the chl-to-C ratio markedly reduced. These observations were consistent with iron starvation having a similar or greater effect on photochemical charge separation in PSII than on downstream electron transfer steps. Declines of the ratio of variable to maximum fluorescence in iron-starved cells were consistent with PSII being a primary target of iron starvation. The functional cross-section of PSII was affected only marginally (<20%) by iron starvation, with the largest values observed in iron-starved cells. The rate constant for electron transfer calculated from fast repetition rate fluorescence was found to covary with the light-saturated photosynthesis rate; it was lowest in the most severely starved cells.  相似文献   

12.
The effects of nitrate, phosphate, and iron starvation and resupply on photosynthetic pigments, selected photosynthetic proteins, and photosystem II (PSII) photochemistry were examined in the diatom Phaeodactylum tricornutum Bohlin (CCMP 1327). Although cell chlorophyll a (chl a) content decreased in nutrient-starved cells, the ratios of light-harvesting accessory pigments (chl c and fucoxanthin) to chl a were unaffected by nutrient starvation. The chl a-specific light absorpition coefficient (a*) and the functional absorption cross-section of PSII (σ) increased during nutrient starvation, consistent with reduction of intracellular self-shading (i.e. a reduction of the “package effect”) as cells became chlorotic. The light-harvesting complex proteins remained a constant proportion of total cell protein during nutrient starvation, indicating that chlorosis mirrored a general reduction in cell protein content. The ratio of the xanthophylls cycle pigments diatoxanthin and diadinoxanthin to chl a increased during nutrient starvation. These pigments are thought to play a photo-protective role by increasing dissipation of excitation energy in the pigment bed upstream from the reaction centers. Despite the increase in diatoxanthin and diadinoxanthin, the efficiency of PSII photochemistry, as measured by the ration of variable to maximum fluorescence (Fv/Fm) of dark-adapted cells, declined markedly under nitrate and iron starvation and moderately under phosphate starvation. Parallel to changes in Fv/Fm were decreases in abundance of the reaction center protein D1 consistent with damage of PSII reaction centers in nutrient-starved cells. The relative abundance of the carboxylating enzyme, ribulose bisphosphate carboxylase/oxygenase (RUBISCO), decreased in response to nitrate and iron starvation but not phosphate starvation. Most marked was the decline in the abundance of the small subunit of RUBISCO in nitrate-starved cells. The changes in pigment content and fluorescence characteristics were typically reversed within 24 h of resupply of the limiting nutrient.  相似文献   

13.
Abstract. 1. Desiccation tolerance and starvation resistance demonstrated significant differentiation among seven Indian geographical populations of Drosophila kikkawai, collected along a latitudinal range of 12.6–32.7 °N. Lack of significant differences in two successive generations suggested that these physiological traits were genetically controlled. 2. North Indian populations of D. kikkawai displayed significantly higher desiccation tolerance than southern populations, whereas there was a reverse trend for starvation tolerance (r > 0.90). Regression slope values indicated an increase of 0.61 h for desiccation and a decrease of 1.71 h per degree latitude for starvation tolerance at 17 °C. The traits evidenced opposite latitudinal clines, and such data also matched thermal climatic conditions on the Indian subcontinent. The survival duration for such traits was significantly higher at 17 than at 25 °C. 3. Significantly higher starvation tolerance in south Indian populations might be due to large population size, species interactions, and higher metabolic rates in the humid tropical environments. In contrast, prolonged unfavourable colder climatic conditions are known to favour starvation tolerance in temperate regions. Thus, the causes of desiccation and starvation tolerance seem quite different under tropical and temperate conditions. 4. Starvation tolerance was correlated negatively with body weight and ovariole number, which might be due to a trade-off in favour of greater allocation to non-lipidic reserves for sustaining starvation tolerance in the tropics. Reduction in metabolic rate may not be applicable for observed higher starvation tolerance in the tropical populations. 5. Multiple regression analysis demonstrated a major effect of coefficient of variation of mean monthly temperature for both the traits of ecological significance. Thus, Indian geographical populations of D. kikkawai provided evidence of independent genetic divergence for starvation and desiccation tolerance under natural conditions.  相似文献   

14.
15.
In Drosophila melanogaster, clines of starvation resistance along a latitudinal gradient (south to north) have been reported in India, which matched with their cline for total body lipids (TL). Nevertheless, producing too many reserves is likely to be costly and a trade‐off might exist with life‐history traits. Previous studies on starvation resistance and life‐history traits of D. melanogaster have mainly focused on quantification of total body lipids, instead of separating ovarian lipids from total body lipids. In the present study, we have quantified absolute ovarian lipids (OL) versus absolute body lipids excluding ovarian lipids (BL) and examined associations with fecundity as well as starvation resistance in two latitudinal populations (8.34 vs. 32.43°N) of Dmelanogaster. Firstly, we observed a trade‐off between BL and OL that matched the trade‐off of starvation resistance, longevity versus fecundity and development time in latitudinal populations of D. melanogaster. Southern populations had higher starvation resistance, more BL and lesser OL, whereas northern populations had enhanced fecundity, OL and lesser BL. Secondly, within population, starvation resistance also correlated with BL, and fecundity with OL. However, there was no correlation between starvation resistance and OL. Moreover, there was utilization of BL and nonutilization of OL under starvation stress. Therefore, resources invested for fecundity in the form of OL were independent of evolved starvation resistance in D. melanogaster. Our results suggest that a common pool of energy storage compounds (lipids) are allocated differentially between fecundity and starvation resistance and are consistent with Y‐model of resource allocation.  相似文献   

16.
Feeding dominates copulatory behavior in the few opisthobranchs for which behavioral hierarchies have been established. However, the influence of starvation on the dominant role has not been investigated previously. The present study investigates copulatory activity in the ascoglossan opisthobranch Ercolania nigra (Lemche) subject to varying starvation regimes. Copulatory activity of E. nigra is significantly higher in unstarved animals than in animals starved for 2h, 6h, and 24h. The decrease in copulatory activity is independent of the duration of previous starvation within the range tested (2–24 h). Copulatory behavior dominates feeding behavior in 60–80% of the cases, regardless of the duration of previous starvation. Thus the behavioral hierarchy of E. nigra differs markedly from that of the opisthobranchs previously investigated.  相似文献   

17.
Efficiency of imidacloprid and thiametoxam on population growth parameters of Aphis gossypii Glover (Hemiptera: Aphididae) was assessed using three bioassay methods including; residual, starvation and FAO dip methods. Aphids were assayed under laboratory conditions at 23 ± 2°C, photoperiod of 16:8 (L:D) and 70% relative humidity. Aphids were transferred to sprayed leaves and Petri dishes in residual and starvation methods, respectively. There was no feeding for the aphids in starvation method. In FAO dip method, insects were dipped for 5 s in pesticide solutions and then transferred to fresh leaves. Results revealed that LC50 values calculated with the starvation and residual methods were respectively 15 and 11% more than FAO dip method (for imidacloprid) and 22 and 18% (for thiametoxam). The LC50 value in starvation method was 3% more than the residual method. Calculated LC50 in starvation and residual methods with imidacloprid respectively caused 160 and 34% increase in intrinsic rates of increase (r m) and net reproductive rate (R 0) in comparison with FAO dip method. Generation time (T) and doubling time (DT) were respectively 59 and 62% less than those in FAO dip method. In contrast, thiametoxam (LC50 concentration) in starvation and residual method lead to 9 and 67% increase in r m and R 0 parameters compared to FAO dip method. However T and DT were respectively 65 and 92% less than mentioned parameters in FAO dip method. There was not any significant difference between life table parameters calculated by residual and starvation bioassay methods.  相似文献   

18.
Summary Crosses were made using strains of S. cerevisiae which carried mitochondrial markers conferring resistance to erythromycin and chloramphenicol. The effect of auxotrophic starvation of one parent prior to mating on the transmission of its mitochondrial markers was studied in different crosses relative to the presence of the cdc8 nuclear mutation (a temperature-sensitive DNA replication).In crosses between two cdc8 mutant strains, auxotrophic starvation of one of the haploid parental strains prior to mating caused a marked decrease of its mitochondrial marker transmission to the diploid progeny of the cross. The transmission decreased as a function of the time of starvation. This effect was not observed in the cross between two wild type strains and in crosses of starved cdc8 phenotypic revertants with cdc8 mutant strains. Only a small, if any, effect of starvation on mitochonrial marker transmission was observed when starved cdc8 mutant strains were crossed either with their phenotypic revettants or with the wild-type strains.In one of the haploid parental strains the starvation increased the frequency of petites as a function of starvation time, while in the other this effect was not observed.In the progeny of cdc8xcdc8 crosses (both in starvation experiments and in control crosses) an increased frequency of diploid petite cells accompanied by a decreased frequency of recombination between mitochondrial markers was noticed.The influence of the cdc8 mutation on the transmission of mitochondrial markers is discussed in terms of high frequency of molecule formation in cdc8 strains.  相似文献   

19.

Background  

The Y model of resource allocation predicts a tradeoff between reproduction and survival. Environmental stress could affect a tradeoff between reproduction and survival, but the physiological mechanisms underlying environmental mediation of the tradeoff are largely unknown. One example is the tradeoff between starvation resistance and early fecundity. One goal of the present study was to determine if reduced early age fecundity was indeed a robust indirect response to selection for starvation resistance, by investigation of a set of D. melanogaster starvation selected lines which had not previously been characterized for age specific egg production. Another goal of the present study was to investigate a possible relationship between ovariole number and starvation resistance. Ovariole number is correlated with maximum daily fecundity in outbred D. melanogaster. Thus, one might expect that a negative genetic correlation between starvation resistance and early fecundity would be accompanied by a decrease in ovariole number.  相似文献   

20.
Desiccation resistance is important for the survival of adult insects, although this key physiological trait has rarely been studied in tephritid flies. In the present study, desiccation resistance of female and male adult Queensland fruit flies Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is determined with respect to age after adult eclosion. Resistance to acute starvation is measured over the same period to disentangle the competing roles of water loss and food deprivation. Survival of adult B. tryoni subjected to conditions of low humidity and starvation is reduced considerably compared with adults that are subjected to starvation alone. Desiccation resistance of adult female B. tryoni is generally lower than that of adult males. Desiccation resistance of adult B. tryoni declines in a continuous and regular manner over the first 20 days after adult eclosion. The regular pattern of declining resistance to desiccation with age in B. tryoni indicates that this reduction is not associated with the onset of maturity and maintenance of reproductive structures, nor with sexual activity. By contrast, resistance to starvation is similar at 0 and 6 days after adult eclosion, and declines thereafter. Survival under starvation and water stress is not related to wing length, which is a standard measure of fly size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号