首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to compare pregnancy rates following fixed-time AI (FTAI) in beef cattle given a new or previously used CIDR insert and injections of estradiol, with or without progesterone, to synchronize follicular wave emergence. In Experiment 1, heifers (n=616) received a new or once-used CIDR insert for 9 days and were given 1mg estradiol cypionate (ECP), with or without 100 mg of a commercial progesterone preparation (CP4), at CIDR insertion. Heifers were treated with PGF at CIDR removal and 0.5 mg ECP i.m. 24h later, with FTAI 55 to 60 h after CIDR removal. Pregnancy rate was not affected by either the number of CIDR uses (P=0.59; 48.3% versus 46.2% for new versus once-used CIDRs, respectively) or the addition of progesterone (P=0.42; 45.6% versus 48.8% for ECP+CP4 and ECP, respectively). In Experiment 2 (replicated at two locations), heifers (n=56) and lactating beef cows (n=307) received a once- or twice-used CIDR and an i.m. injection of 1mg estradiol benzoate (EB), with or without 100 mg progesterone, at CIDR insertion. Cattle received PGF in the ischiorectal fossa at CIDR removal (Day 7) and 1mg EB i.m. 24h later, with FTAI 52 to 56 h after CIDR removal. Pregnancy rate was affected by location (P<0.002; 46.0% versus 61.1% for Locations A and B, respectively), parity (P<0.04; 67.9% versus 53.1% in heifers and cows, respectively), and numbers of times the CIDR had been used (P<0.03; 62.4% versus 48.4% for once- and twice-used CIDRs, respectively). However, the addition of progesterone to the injection of EB at CIDR insertion did not affect pregnancy rate (P=0.6). In Experiment 3, heifers (n=187) received one new, one once-used, one twice-used or two twice-used CIDRs for 7 days and 2 mg EB plus 50 mg of CP4 at the time of CIDR insertion. Heifers were treated with PGF at CIDR removal and 1mg EB i.m. 24 h later, with FTAI 52-56 h after CIDR removal. Pregnancy rate was not affected by treatments (P=0.28, 57.5, 63.8, 47.9, 47.9% for one new, one once-used, one twice-used, or two twice-used CIDRs, respectively). In summary, pregnancy rate to FTAI did not differ between cattle synchronized with a new or once-used CIDR, but pregnancy rate was lower in cattle synchronized with a twice-used CIDR; however, the insertion of two twice-used CIDRs did not affect pregnancy rates. The addition of an injection of progesterone to the estradiol treatment at CIDR insertion did not enhance pregnancy rate to FTAI.  相似文献   

2.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

3.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

4.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

5.
The objective was to determine reproductive performance following AI in beef heifers given estradiol to synchronize ovarian follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose PGF-based protocol. In Experiment 1, 561 cycling (confirmed by ultrasonography), Angus heifers received 500 microg cloprostenol, i.m. (PGF) twice, 14 days apart (days 0 and 14) and were equally allocated to four groups in a 2 x 2 factorial design. On Day 7, heifers received either 2 mg estradiol benzoate (EB) and 50 mg progesterone (P), i.m. in oil (EBP group) or no treatment (NT group). Half the heifers in each group received 1mg EB, i.m. in oil on Day 15 (24h after the second PGF treatment) with TAI 28 h later (52 h after PGF), and the other half received 100 microg GnRH, i.m. on Day 17 (72 h after PGF) concurrent with TAI. All heifers were observed for estrus twice daily from days 13 to 17; those detected in estrus more than 16 h before scheduled TAI were inseminated 4-16 h later and considered nonpregnant to TAI. Overall pregnancy rate (approximately 35 days after AI) was higher in heifers that received EBP than those that did not (61.6% versus 48.2%, respectively; P < 0.002); but was lower in heifers that received EB after PGF than those that received GnRH (50.0% versus 59.8%; P < 0.02). Although estrus was detected prior to TAI in 77 of 279 heifers (27.6%) treated with EBP (presumably due to induced luteolysis), they were inseminated and 53.2% became pregnant. Overall pregnancy rates were 51.4, 68.3, 45.0, and 55.0% in the NT/GnRH, EBP/GnRH, NT/EB, and EBP/EB groups, respectively (P < 0.05). In Experiment 2, 401 cycling, Angus heifers were used. The design was identical to Experiment 1, except that 1.5mg estradiol-17beta (E-17beta) plus 50mg progesterone (E-17betaP) and 1mg E-17beta were used in lieu of EBP and EB, respectively. All heifers receiving E-17beta 24h after the second injection of PGF (NT/E-17beta and E-17betaP/E-17beta) were TAI 28 h later without estrus detection, i.e. 52 h after PGF. Heifers in the other two groups received 100 microg GnRH, i.m. 72 h after PGF and were concurrently TAI; heifers in these two groups that were detected in estrus prior to this time were inseminated 4-12h later and considered nonpregnant to TAI. Estrus rate during the first 72 h after the second PGF treatment was higher (P < 0.05) in the E-17betaP/GnRH group (45.0%; n = 100) than in the NT/GnRH group (16.0%; n = 100), but conception rate following estrus detection and AI was not different (mean, 57.4%; P = 0.50). Overall pregnancy rate was not significantly different among groups (mean, 46.9%; P = 0.32). In summary, the use of EB or E-17beta to synchronize follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose, PGF-based protocol resulted in acceptable fertility to TAI. However, when 2mg EB was used to synchronize follicular wave emergence, early estrus occurred in approximately 28% of heifers, necessitating additional estrus detection. A combination of estrus detection and timed-AI in a two-dose PGF protocol resulted in highly acceptable pregnancy rates.  相似文献   

6.
The present study aimed to evaluate the efficacy of different inducers of new follicular wave emergence (FWE) and ovulation in fixed-time artificial insemination (FTAI) synchronization protocols using norgestomet ear implants (NORG) in Bos indicus cattle. In Experiment 1, the synchronization of FWE was evaluated when two different estradiol esters in different doses [2mg estradiol benzoate (EB), 2.5mg EV or 5mg estradiol valerate (EV)] were administered with NORG implant insertion in B. indicus cattle (estrous cyclic heifers and cows with suckling calves; n=10 per treatment). After estradiol treatment, ovarian ultrasonic exams were performed once daily to detect the interval between treatment and FWE. There were significant treatment-by-animal category interaction (P=0.05) on the interval from the estradiol treatment to FWE. An earlier (P<0.0001) and less variable (P=0.02) interval from estradiol treatment to FWE was observed in heifers treated with EB (2.5±0.2; mean±SE) than in those treated with 2.5mg EV (4.2±0.3) or 5mg EV (6.1±0.6). Cows treated with 5mg EV (4.0±0.5) had longer (P=0.05) interval than cows receiving EB (2.5±0.2), however, there was an intermediate interval in those cows treated with 2.5mg EV (3.1±0.4). In Experiment 2, the number of uses of the NORG implant (new; n=305 or previously used once; n=314) and three different ovulation induction hormones [0.5mg estradiol cypionate (EC) at implant removal (n=205), 1mg EB given 24h after implant removal (n=219), or 100μg gonadorelin (GnRH) given at FTAI (n=195)] were evaluated in Nelore heifers (2×3 factorial design). Similar pregnancy per AI (P/AI; 30 days after FTAI; P>0.05) were achieved using each of the three ovulation induction hormones (EB=40.6%; EC=48.3%, or GnRH=48.7%) and with a new (47.2%) or once-used NORG implant (44.3%). In Experiment 3, the effect of different ovulation induction hormones for FTAI [1mg EC at NORG implant removal (n=228), 10μg buserelin acetate at FTAI (GnRH; n=212) or both treatments (EC+GnRH; n=215)] on P/AI was evaluated in suckled beef cows treated with a once-used NORG implant and EB to synchronize the FWE. Similar P/AI (P=0.71) were obtained using GnRH (50.9%), EC (51.8%) or both treatments (54.9%) as ovulation induction hormones. Therefore, both doses of EV (2.5 or 5.0mg) with NORG implant delayed and increased the variation of the day of new FWE compared with EB in B. indicus cattle. These effects were more pronounced in B. indicus heifers than cows. Synchronization protocols for FTAI with either a new or once-used NORG implant with EB at insertion to induce a new FWE and either the use of EB, EC or GnRH as ovulation induction hormones may be successful in B. indicus heifers. Also, when a once-used NORG implant was used, either the administration of EC, GnRH or both as ovulation inducers resulted in similar P/AI in suckled B. indicus cows, showing no additive effect of the combination of both ovulation induction hormones.  相似文献   

7.
The objective of this study was to evaluate the effect of a PGF2α-analogue (PGF) on ovulation and pregnancy rates after timed artificial insemination (TAI) in cattle. In experiment 1, crossbred dual-purpose heifers, in a crossover design (3 × 3), were given an intravaginal progesterone-releasing insert (controlled internal drug release [CIDR]) plus 1 mg estradiol benzoate (EB) intramuscularly (im) and 250 μg of a PGF-analogue im on Day 0. The CIDR inserts were removed 5 days after follicular wave emergence, and the heifers were randomly divided into three treatment groups to receive the following treatments: (1) 1 mg of EB im (EB group, n = 13); (2) 500 μg of PGF im (PG group, n = 13); or (3) saline (control group, n = 13), 24 hours after CIDR removal. Ovulation occurred earlier in EB (69.81 ± 3.23 hours) and PG groups (73.09 ± 3.23 hours) compared with control (83.07 ± 4.6 hours; P = 0.01) after CIDR removal. In experiment 2, pubertal beef heifers (n = 444), 12 to 14 months of age were used. On Day 0, the heifers were given a CIDR insert plus 2 mg EB im. On Day 9, the CIDR was removed and the heifers were given 500 μg of PGF im. Heifers were randomly assigned into one of three treatment groups: (1) 1 mg of EB (EB group; n = 145); (2) 500 μg of PGF (PG group; n = 149), both 24 hours after CIDR removal; or (3) 600 μg of estradiol cypionate (ECP group; n = 150) at CIDR removal. Timed artificial insemination occurred 48 hours after CIDR removal in the ECP group and 54 hours in the PG and EB groups. The percentage of heifers ovulating was higher in the PG group compared with the other groups (P = 0.08). However, the pregnancy rates did not differ among groups (47.6%, 45%, and 46.6%, for EB, PG, and ECP, respectively; P = 0.9). In experiment 3, 224 lactating beef cows, 40 to 50 days postpartum with 2.5 to 3.5 of body condition score were treated similarly as described in experiment 2, except for the ECP group, which was excluded. The treatments were as follows: 1 mg EB (EB group; n = 117) or 500 μg PGF (PG group; n = 107), 24 hours after CIDR removal. The calves were temporarily separated from their dams from Days 9 to 11. No difference was detected on the pregnancy rate between the EB and PG groups (58.1% vs. 47.6%, respectively; P = 0.11). Taken together, the combined results suggested that PGF2α could be successfully used to induce and synchronize ovulation in cattle undergoing TAI, with similar pregnancy rates when compared with other ovulatory stimuli (ECP and EB).  相似文献   

8.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   

9.
The objective was to determine whether timed artificial insemination (TAI) 56 h after removal of a Controlled Internal Drug Release (CIDR, 1.38 g of progesterone) insert would improve AI pregnancy rate in beef heifers compared to TAI 72 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol. Angus cross beef heifers (n = 1098) at nine locations [WA (5 locations; n = 634), ID (2 locations; n = 211), VA (one location; n = 193) and WY (one location; n = 60)] were included in this study. All heifers were given a body condition score (BCS; 1-emaciated; 9-obese), and received a CIDR insert and 100 μg of gonadorelin hydrochloride (GnRH) on Day 0. The CIDR insert was removed and two doses of 25 mg of dinoprost (PGF) were given, first dose at CIDR insert removal and second dose 6 h later, on Day 5. A subset of heifers (n = 629) received an estrus detector aid at CIDR removal. After CIDR removal, heifers were observed thrice daily for estrus and estrus detector aid status until they were inseminated. Within farm, heifers were randomly allocated to two groups and were inseminated either at 56 h (n = 554) or at 72 h (n = 544) after CIDR removal. All heifers were given 100 μg of GnRH at AI. Insemination 56 h after CIDR insert removal improved AI pregnancy rate compared to insemination 72 h (66.2 vs. 55.9%; P < 0.001; 1 - β = 0.94). Locations, BCS categories (≤ 6 vs. > 6) and location by treatment and BCS by treatment interactions did not influence AI pregnancy rate (P > 0.1). The AI pregnancy rates for heifers with BCS ≤ 6 and > 6 were 61.8 and 60.1%, respectively (P > 0.1). The AI pregnancy rates among locations varied from 54.9 to 69.2% (P > 0.1). The AI pregnancy rate for heifers observed in estrus at or before AI was not different compared to heifers not observed in estrus [(65.4% (302/462) vs. 52.7% (88/167); P > 0.05)]. In conclusion, heifers inseminated 56 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol had, on average, 10.3% higher AI pregnancy rate compared to heifers inseminated 72 h after CIDR insert removal.  相似文献   

10.
The present study determined whether a 5-d progesterone-based CO-Synch protocol with a single dose of prostaglandin F (PGF) at progesterone withdrawal on Day 5, would yield a timed AI pregnancy rate similar to two doses of PGF given 6 h apart on Day 5. Angus cross beef heifers (N = 562) at six locations were used. All heifers received 100 µg of gonadorelin hydrochloride (GnRH) and a controlled internal drug release (CIDR) insert on Day 0. Within farm, heifers were randomly allocated to receive one dose of 25 mg dinoprost (PGF) at CIDR removal on Day 5 (1 PGF; N = 264), or two doses of 25 mg PGF, with the first dose given on Day 5 at CIDR removal, and the second dose 6 h later (2 PGF; N = 298). Most heifers (N = 415) received a heat detector patch at CIDR removal. After CIDR removal, heifers were observed twice daily through Day 7 for estrus and heat detector aid status was recorded. On Day 8, heifers were given 100 µg of GnRH, heat detector aid status was recorded, and heifers were inseminated approximately 72 h after CIDR removal. Accounting for significant variables such as location (P < 0.01), heifers in estrus at or prior to AI (P < 0.001), and a treatment by location interaction (P < 0.01), two doses of PGF on Day 5 tended to have higher pregnancy rates to timed AI compared to those that received one dose of PGF (P = 0.06). In conclusion, heifers given two doses of PGF at CIDR removal on Day 5, in a 5-d CIDR-CO-Synch protocol, tended to have a higher pregnancy rate than those that received only one dose of PGF.  相似文献   

11.
This experiment was conducted to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with controlled internal drug release (CIDR)-based protocols to synchronize estrus. Cows assigned to the Show-Me-Synch (n=167) protocol received a CIDR from d 0 to 14, and prostaglandin F(2α) (PGF(2α)) on d 30. Cows assigned to 7-d CO-Synch+CIDR (n=177) received a CIDR and gonadotropin releasing hormone (GnRH) on d 23. On d 30, CIDRs were removed and PGF(2α) was administered. Blood sampling occurred on d -10 and 0 of treatment to determine estrous cyclicity status (progesterone ≥0.5 ng/mL estrous cycling). Treatments were balanced on age, DPP and BCS. Estrous detection was performed using HeatWatch from PGF(2α) to FTAI. Artificial insemination was performed at predetermined fixed times (72 h, Show-Me-Synch; 66h, 7-d CO-Synch+CIDR) and all cows were administered GnRH at FTAI. This experiment was conducted over a two year period; no differences were found between years so the data were pooled for further analysis. Pregnancy rate resulting from FTAI did not differ (P>0.10) between technicians or AI sires. Pregnancy rate resulting from FTAI was similar between treatments (P=0.20); however, cows that exhibited estrus prior to FTAI had a higher pregnancy rate (P<0.01) than for those that did not. Pregnancy rate at the end of the breeding period was similar between treatments (P=0.28). In summary, FTAI pregnancy rates were similar among postpartum beef cows following treatment with either a short- or long-term CIDR-based estrous synchronization protocol.  相似文献   

12.
The objectives were (1) to determine the effects of gonadorelin hydrochloride (GnRH) injection at controlled internal drug release (CIDR) insertion on Day 0 and the number of PGF2α doses at CIDR removal on Day 5 in a 5-day CO-Synch + CIDR program on pregnancy rate (PR) to artificial insemination (AI) in heifers; (2) to examine how the effect of systemic concentration of progesterone and size of follicles influenced treatment outcome. Angus cross beef heifers (n = 1018) at eight locations and Holstein dairy heifers (n = 1137) at 15 locations were included in this study. On Day 0, heifers were body condition scored (BCS), and received a CIDR. Within farms, heifers were randomly divided into two groups: at the time of CIDR insertion, the GnRH group received 100 μg of GnRH and No-GnRH group received none. On Day 5, all heifers received 25 mg of PGF2α at the time of CIDR insert removal. The GnRH and No-GnRH groups were further divided into 1PGF and 2PGF groups. The heifers in 2PGF group received a second dose of PGF2α 6 hours after the administration of the first dose. Beef heifers underwent AI at 56 hours and dairy heifers at 72 hours after CIDR removal and received 100 μg of GnRH at the time of AI. Pregnancy was determined approximately at 35 and/or 70 days after AI. Controlling for herd effect (P < 0.06), the treatments had significant effect on AI pregnancy in beef heifers (P = 0.03). The AI-PRs were 50.3%, 50.2%, 59.7%, and 58.3% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PRs were ranged from 50% to 62.4% between herds. Controlling for herd effects (P < 0.01) and for BCS (P < 0.05), the AI pregnancy was not different among the treatment groups in dairy heifers (P > 0.05). The AI-PRs were 51.2%, 51.9%, 53.9%, and 54.5% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PR varied among locations from 48.3% to 75.0%. The AI-PR was 43.5%, 50.4%, and 64.2% for 2.5 or less, 2.75 to 3.5, and greater than 3.5 BCS categories. Numerically higher AI-PRs were observed in beef and dairy heifers that exhibited high progesterone concentrations at the time of CIDR insertion (>1 ng/mL, with a CL). In addition, numerically higher AI-PRs were also observed in heifers receiving CIDR + GnRH with both high and low progesterone concentration (<1 ng/mL) initially compared with heifers receiving a CIDR only with low progesterone. In dairy heifers, there were no differences in the pregnancy loss between 35 and 70 days post-AI among the treatment groups (P > 0.1). In conclusion, GnRH administration at the time of CIDR insertion is advantageous in beef heifers, but not in dairy heifers, to improve AI-PR in the 5-day CIDR + CO-Synch protocol. In addition, in this study, both dairy heifers that received either one or two PGF2α doses at CIDR removal resulted in similar AI-PR in this study regardless of whether they received GnRH at CIDR insertion.  相似文献   

13.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

14.
Three experiments were conducted to: (1) compare the effect of three oestradiol formulations on gonadotrophin release in ovariectomised cows; (2) compare the effects of either oestradiol-17beta (E-17beta) or oestradiol benzoate (EB), given at two doses, on the synchrony of ovarian follicular wave emergence in CIDR-treated beef cattle; and (3) determine the timing of ovulation of the dominant follicle of a synchronised follicular wave following administration of E-17beta or EB 24h after progesterone withdrawal. In Experiment 1, ovariectomised cows (n = 16) received a once-used CIDR on Day 0 (beginning of the experiment) and were allocated randomly to receive 5mg of E-17beta, EB or oestradiol valerate (EV) plus 100mg progesterone i.m. The CIDR inserts were removed on Day 7. There were effects of time, and a treatment-by-time interaction (P < 0.0001) for plasma concentrations of both oestradiol and FSH. Plasma oestradiol concentrations peaked 12h after treatment, with highest (P < 0.01) peak concentrations in cows given E-17beta; estradiol concentrations subsequently returned to baseline by 36 h in E-17beta-treated cows and by 96 h in EB- and EV-treated cows. Plasma FSH concentrations decreased by 12h after oestradiol treatment in all groups (P < 0.0001), reached a nadir at 24h, and increased by 60 h in all groups; plasma FSH reached higher (P < 0.02) concentrations in E-17beta-treated than in EB- or EV-treated cows. In Experiment 2, non-lactating Hereford cows (n = 29) received a new CIDR on Day 0 (beginning of the experiment), and were assigned randomly to receive 1 or 5mg of E-17beta or EB i.m. on Day 1. On Day 8, CIDR were removed and PGF was given. Transrectal ultrasonography was done once daily from 2 days before CIDR insertion to 2 days after CIDR removal, and then twice-daily to ovulation. Although there was no difference among groups in the interval from oestradiol treatment to follicular wave emergence (4.2 +/- 0.3 days; P = 0.5), 5mg of E-17beta resulted in the least variable interval to wave emergence (P < 0.005), compared with the other treatment groups which were not different (P = 0.1). For the interval from CIDR removal to ovulation, there were no differences among groups for either means (P = 0.5) or variances (P = 0.1). In Experiment 3, beef heifers (n = 32) received a once-used CIDR on Day 0 (beginning of the experiment) plus 100mg progesterone i.m. and were assigned randomly to receive 5mg E-17beta or 1mg EB i.m. On Day 7, CIDR were removed and all heifers received PGF. On Day 8 (24h after CIDR removal), each group was subdivided randomly to receive 1mg of either E-17beta or EB i.m. There was no effect of oestradiol formulation on interval from treatment to follicular wave emergence (4.1 +/- 0.2 days; P = 0.7) or on the median interval (76.6h; P = 0.7) or range (72-120 h; P = 0.08) from CIDR removal to ovulation. In summary, oestradiol treatments suppressed FSH in ovariectomised cows, with the duration of suppression dependent on the oestradiol formulation. Both E-17beta and EB effectively synchronised ovarian follicular wave emergence and ovulation in CIDR-treated cattle, and the interval from CIDR removal to ovulation did not differ in heifers given either E-17beta or EB 24h after CIDR removal.  相似文献   

15.
The objective was to determine whether eCG in an ovulation synchronization protocol with an intravaginal progesterone (P4)-releasing device (IPRD) containing a low dose of P4 improves pregnancy rate (PR) to fixed-time AI (FTAI) in Bos indicus heifers. Day 0, 2 y old Brahman heifers were allocated to either eCG+ (n = 159) or eCG- (n = 157) treatment groups. All heifers were weighed, body condition scored (BCS), and ultrasonographically examined to measure uterine horn diameter and presence of a CL. On Day 0, all heifers received a low-dose IPRD (0.78 g P4) and 1 mg of estradiol benzoate (EB) im. On Day 8, the IPRD was removed, all heifers received 500 μg cloprostenol im, and those in the eCG+ treatment group received 300 IU of eCG im. On Day 9, all heifers received 1 mg EB im. All heifers were FTAI 52 to 56 h after IPRD removal. Ten days after FTAI, heifers were exposed to bulls. Heifers were diagnosed as pregnant to FTAI, natural mating, or not detectably pregnant (NDP) 65 d after FTAI. Treatment with eCG+ as compared to eCG- did not affect PR to FTAI (28.9 vs 30.6%; P = 0.590), natural mating (51.3 vs 47.7%; P = 0.595), or overall (65.4 vs 63.7%; P = 0.872). Mean live weight gain from Days 0 to 65 d post-FTAI was higher in heifers pregnant to FTAI (72.29 ± 4.26 kg; P = 0.033) and overall (66.83 ± 3.65 kg; P = 0.021), compared to heifers that were NDP (60.03 ± 3.16 kg). Uterine diameter group, 9–11, 12–13, and 14–20 mm (26.2, 31.3, and 33.3%; P = 0.256), presence and absence of CL (29.8 vs 29.4%; P = 0.975), AI technicians 1, 2, and 3 (32.6, 28.8, and 22.4%; P = 0.293) and sires A, B, and C (23.9, 36.0 and 27.0%; P = 0.122) had no effect on PR to FTAI, natural mating, or overall. In conclusion, treatment of primarily cycling Brahman heifers with 300 IU eCG in conjunction with a low P4-dose (0.78 g) IPRD and EB to synchronize ovulation, did not improve PR after FTAI, natural mating, or overall.  相似文献   

16.
An experiment was designed to evaluate a) the effect of a progesterone-estradiol combined treatment on ovarian follicular dynamics in postpartum beef cows, and b) ovulation and the subsequent luteal activity after short-term calf removal and GnRH agonist treatment. Multiparous Angus cows (25 to 40 d after calving) were assigned to the following treatments: untreated (Control, n = 9); short term calf removal (CR, n = 8); progesterone (CIDR, n = 9) and progesterone plus estradiol-17 beta (CIDR + E-17 beta, n = 9). Progesterone treatment (CIDR) lasted 8 d and the day of device insertion was considered as Day 0. Cows in the CIDR + E-17 beta group also received an i.m. injection of 5 mg of E-17 beta on Day 1. On Day 8, calves were removed for 48 h (CR, CIDR and CIDR + E-17 beta groups) and 6 h before the end of calf removal these cows also received an i.m. injection of 8 micrograms of Busereline (GnRH). Anestrus was confirmed in all cows by the absence of luteal tissue and progesterone concentrations below 1 ng ml-1 at the beginning of the experiment. Although mean (+/- SEM) interval from the beginning of the experiment (Day 0) to wave emergence did not differ (P > 0.05) among treatment groups (Control, 1.9 +/- 1.0, range -2 to 7 d; CR, 3.9 +/- 0.7, range 0 to 6 d; CIDR, 2.8 +/- 0.5, range 0 to 4 d and CIDR + E-17 beta, 4.1 +/- 0.2, range 3 to 5), the variability was less (P < 0.05) in the CIDR + E-17 beta group. The proportion of cows ovulating 24 to 48 h after GnRH administration tended (P = 0.08) to be higher in cows from CIDR + E-17 beta group (8/9) than in those of CR (5/8) or CIDR (6/9) groups, respectively and was associated with a higher proportion (P < 0.05) of CIDR + E-17 beta treated cows (9/9) that had a dominant follicle in the growing/early static phase at the time of GnRH treatment compared to the other GnRH treated groups (5/8, and 4/9 for CR and CIDR groups, respectively). Two CR cows ovulated 0-24 h after GnRH and only one Control cow ovulated the day before the time of GnRH administration. Cows pretreated with progesterone had longer (P < 0.05) luteal lifespan (CIDR, 14.5 +/- 0.7, CIDR + E-17 beta, 13.9 +/- 0.6 d) than those not treated with CIDR (Control, 5, CR, 4.0 +/- 0.4). We conclude that progesterone plus estradiol treatment results in tightly synchronized wave emergence and high GnRH-induced ovulation rate with normal luteal activity in postpartum beef cattle.  相似文献   

17.
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy.  相似文献   

18.
Angus (n=6), Brangus (5/8 Angus x 3/8 Brahman, n=6), and Brahman x Angus (3/8 Angus x 5/8 Brahman, n=6) heifers exhibiting estrous cycles at regular intervals were used to determine if the percentage of Bos indicus breeding influenced the secretory patterns of LH in response to a GnRH treatment on Day 6 of the estrous cycle. Heifers were pre-synchronized with a two-injection PGF(2 alpha) protocol (25 mg i.m. Day -14 and 12.5 mg i.m. Day -3 and -2 of experiment). Heifers received 100 microg GnRH i.m. on Day 6 of the subsequent estrous cycle. Blood samples were collected at -60, -30, and -1 min before GnRH and 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, and 480 min after GnRH to determine concentrations of serum LH. Estradiol concentrations were determined at -60, -30, and -1 min before GnRH. On Day 6 and 8, ovaries were examined by ultrasonography to determine if ovulation occurred. On Day 13, heifers received 25 mg PGF(2 alpha) i.m. and blood samples were collected daily until either the expression of estrus or Day 20 for heifers not exhibiting estrus to determine progesterone concentrations. There was no effect (P>0.10) of breed on ovulation rate to GnRH as well as size of the largest follicle, mean estradiol, and mean corpus luteum volume at GnRH. Mean LH was greater (P<0.05) for Angus (7.0+/-0.8 ng/mL) compared to Brangus (4.6+/-0.8 ng/mL) and Brahman x Angus (2.9+/-0.8 ng/mL), which were similar (P>0.10). Mean LH peak-height was similar (P>0.10) for Brangus (13.9+/-3.4 ng/mL) compared to Angus (21.9+/-3.4 ng/mL) and Brahman x Angus (8.0+/-3.4 ng/mL), but was greater (P<0.05) for Angus compared to Brahman x Angus. Interval from GnRH to LH peak was similar (P>0.10) between breeds. As the percentage of Bos indicus breeding increased the amount of LH released in response to GnRH on Day 6 of the estrous cycle decreased.  相似文献   

19.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

20.
The objective of this study was to compare the conception rate for fixed-timed artificial insemination (FTAI) and observed heat artificial insemination (HAI) prior to the scheduled FTAI in Ovsynch and Heatsynch synchronization protocols. In Experiment 1, lactating dairy cows (n=535) received two set-up injections of 25mg prostaglandin F(2alpha) (PGF(2alpha)) i.m., 14 days apart starting at 36+/-3 days in milk (DIM). Cows were blocked by parity and were randomly allocated to either Ovsynch or Heatsynch groups. All cows received 100 microg of GnRH i.m. 14 days after the second set-up injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m., 7 days later. In the Ovsynch group, HAI cows (n=29) were bred on standing estrus after the third PGF(2alpha) before the scheduled second GnRH, whereas FTAI cows (n=218) that were not observed in estrus, received a second injection of 100 microg of GnRH i.m., 48 h after the third PGF(2alpha) and received TAI 8 h after the second GnRH. In the Heatsynch group, all cows (n=288) received 0.5 mg of estradiol cypionate (ECP) 24 h after third PGF(2alpha) and HAI cows (n=172) were bred on standing estrus and FTAI cows (n=116) that were not observed in estrus, received TAI 72 h after the third PGF(2alpha). In Experiment 2, repeat breeder cows (n=186) were randomly assigned to either Ovsynch or Heatsynch groups. The FTAI and HAI cows were inseminated similar to Experiment 1. All cows were observed for estrus three times daily. The associations with the conception rate were modeled with logistic regression separately for Experiments 1 and 2. Of all the variables included in the model in Experiment 1, type of AI (HAI versus FTAI, P=0.0003) and parity (primiparous versus multiparous, P=0.05) influenced the first service conception rate. Over-all conception rate and first service conception rate for HAI cows were higher compared to FTAI cows (33.8% versus 21.3%, and 35.3% versus 21.0%; P=0.001). In the Heatsynch group, cows that received HAI had significantly higher over-all conception rate and first service conception rate compared to FTAI (35.2% versus 17.3% and 36.0% versus 15.5%; P=0.0001). The conception rates in repeat breeder cows for HAI and FTAI (30.1% versus 22.3%) were not different (P>0.1). In conclusion, it was recommended to include AI at observed estrus and fixed-time AI for cows not observed in estrus in order to improve the conception rate in synchronization protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号