首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serpins form loop-sheet polymers through the formation of a partially folded intermediate. Through mutagenesis and biophysical analysis, we have probed the conformational stability of the F-helix, demonstrating that it is almost completely unfolded in the intermediate state. The replacement of Tyr160 on the F-helix of alpha1-antitrypsin to alanine results in the loss of a conserved hydrogen bond that dramatically reduces the stability of the protein to both heat and solvent denaturation, indicating the importance of Tyr160 in the stability of the molecule. The mutation of Tyr160 to a tryptophan residue, within a fluorescently silent variant of alpha1-antitrypsin, results in a fully active, stable serpin. Fluorescence analysis of the equilibrium unfolding behavior of this variant indicates that the F-helix is highly disrupted in the intermediate conformation. Iodide quenching experiments demonstrate that the tryptophan residue is exposed to a similar extent in both the intermediate and unfolded states. Cumulatively, these data indicate that the F-helix plays an important role in controlling the early conformational changes involved in alpha1-antitrypsin unfolding. The implications of these data on both alpha1-antitrypsin function and misfolding are discussed.  相似文献   

2.
Serpins inhibit cognate serine proteases involved in a number of important processes including blood coagulation and inflammation. Consequently, loss of serpin function or stability results in a number of disease states. Many of the naturally occurring mutations leading to disease are located within strand 1 of the C beta-sheet of the serpin. To ascertain the structural and functional importance of each residue in this strand, which constitutes the so-called distal hinge of the reactive center loop of the serpin, an alanine scanning study was carried out on recombinant alpha(1)-antitrypsin Pittsburgh mutant (P1 = Arg). Mutation of the P10' position had no effect on its inhibitory properties towards thrombin. Mutations to residues P7' and P9' caused these serpins to have an increased tendency to act as substrates rather than inhibitors, while mutations at P6' and P8' positions caused the serpin to behave almost entirely as a substrate. Mutations at the P6' and P8' residues of the C beta-sheet, which are buried in the hydrophobic core in the native structure, caused the serpin to become highly unstable and polymerize much more readily. Thus, P6' and P8' mutants of alpha(1)-antitrypsin had melting temperatures 14 degrees lower than wild-type alpha(1)-antitrypsin. These results indicate the importance of maintaining the anchoring of the distal hinge to both the inhibitory mechanism and stability of serpins, the inhibitory mechanism being particularly sensitive to any perturbations in this region. The results of this study allow more informed analysis of the effects of mutations found at these positions in disease-associated serpin variants.  相似文献   

3.
The presence of the Z mutation (Glu342Lys) is responsible for more than 95% of α1-antitrypsin (α1AT) deficiency cases. It leads to increased polymerization of the serpin α1AT during its synthesis and in circulation. It has been proposed that the Z mutation results in a conformational change within the folded state of antitrypsin that enhances its polymerization. In order to localize the conformational change, we have created two single tryptophan mutants of Z α1AT and analyzed their fluorescence properties. α1AT contains two tryptophan residues that are located in distinct regions of the molecule: Trp194 at the top of β-sheet A and Trp238 on β-sheet B. We have replaced each tryptophan residue individually with a phenylalanine in order to study the local environment of the remaining tryptophan residue in both M and Z α1AT. A detailed fluorescence spectroscopic analysis of each mutant was carried out, and we detected differences in the emission spectrum, the Stern-Volmer constant for potassium iodide quenching and the anisotropy of only Trp194 in Z α1AT compared to M α1AT. Our data reveal that the Z mutation results in a conformational change at the top of β-sheet A but does not affect the structural integrity of β-sheet B.  相似文献   

4.
Conformational transition is fundamental to the mechanism of functional regulation in proteins, and serpins (serine protease inhibitors) can provide insight into this process. Serpins are metastable in their native forms, and they ordinarily undergo conformational transition to a stable state only when they form a tight complex with target proteases. The metastable native form is thus considered to be a kinetically trapped folding intermediate. We sought to understand the nature of the serpin kinetic trap as a step toward discovering how conformational transition is regulated. We found that mutations of the B/C beta-barrel of native alpha(1)-antitrypsin, a prototypical serpin, allowed conversion of the molecule into a more stable state. A 2.2 A resolution crystal structure of the stable form (PDB code, ) showed that the reactive site loop is inserted into an A beta-sheet, as in the latent plasminogen activator inhibitor-1. Mutational analyses suggest strongly that interactions not found in the final stable form cause the kinetic trap in serpin protein folding.  相似文献   

5.
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.  相似文献   

6.
We have demonstrated that interactions within the conserved serpin breach region play a direct role in the critical step of the serpin reaction in which the acyl-enzyme intermediate must first be exposed to hydrolyzing water and aqueous deacylation. Substitution of the breach tryptophan in PAI-1 (Trp175), a residue found in virtually all known serpins, with phenylalanine altered the kinetics of the reaction mechanism and impeded the ability of PAI-1 to spontaneously become latent without compromising the inherent rate of cleaved loop insertion or partitioning between the final inhibited serpin-proteinase complex and hydrolyzed serpin. Kinetic dissection of the PAI-1 inhibitory mechanism using multiple target proteinases made possible the identification of a single rate-limiting intermediate step coupled to the molecular interactions within the breach region. This step involves the initial insertion of the proximal reactive center loop hinge residue(s) into beta-sheet A and facilitates translocation of the distal P'-side of the cleaved reactive center loop from the substrate cleft of the proteinase. Substitution of the tryptophan residue raised the kinetic barrier restricting the initial loop insertion event, significantly retarding the rate-limiting step in tPA reactions in which strong exosite interactions must be overcome for the reaction to proceed.  相似文献   

7.
alpha(1)-Antitrypsin is the most abundant circulating protease inhibitor and the archetype of the serine protease inhibitor or serpin superfamily. Members of this family may be inactivated by point mutations that favor transition to a polymeric conformation. This polymeric conformation underlies diseases as diverse as alpha(1)-antitrypsin deficiency-related cirrhosis, thrombosis, angio-edema, and dementia. The precise structural linkage within a polymer has been the subject of much debate with evidence for reactive loop insertion into beta-sheet A or C or as strand 7A. We have used site directed cysteine mutants and fluorescence resonance energy transfer (FRET) to measure a number of distances between monomeric units in polymeric alpha(1)-antitrypsin. We have then used a combinatorial approach to compare distances determined from FRET with distances obtained from 2.9 x 10(6) different possible orientations of the alpha(1)-antitrypsin polymer. The closest matches between experimental FRET measurements and theoretical structures show conclusively that polymers of alpha(1)-antitrypsin form by insertion of the reactive loop into beta-sheet A.  相似文献   

8.
Protein misfolding and aggregation play an integral role in many diseases. The misfolding of the serpin (SERine Proteinase INhibitor) alpha1-antitrypsin results in the accumulation of insoluble polymers within hepatocytes and alpha1-antitrypsin deficiency in plasma, predisposing patients to liver cirrhosis and emphysema. We have examined the effect of three naturally occurring osmolytes, sarcosine, glycine betaine and trimethylamine N-oxide, on conformational changes in alpha1-antitrypsin. All three solutes protected native alpha1-antitrypsin against thermally induced polymerisation and inactivation in a concentration-dependent manner. Further spectroscopic analysis showed that sarcosine stabilises the native conformation of alpha1-antitrypsin, thus hindering its conversion to an intermediate state and subsequent polymerisation. On refolding in the presence of sarcosine, alpha1-antitrypsin formed a heterogeneous population, with increasing proportions of molecules adopting an inactive conformation in higher concentrations of the osmolyte. These data show that sarcosine can be used to prevent abnormal structural changes in native alpha1-antitrypsin, but is ineffective in facilitating the correct folding of the protein. The implications of these results in the context of conformational changes and states adopted by alpha1-antitrypsin are discussed.  相似文献   

9.
The native serpin fold is metastable and possesses the inherent ability to convert into more stable, but inactive, conformations. In order to understand why serpins attain the native fold instead of other more thermodynamically favourable folds we have investigated the presence of residual structure within denatured antichymotrypsin (ACT). Through mutagenesis we created a single tryptophan variant of ACT in which a Trp residue (276) is situated on the H-helix, located within a region known as the B/C barrel. The presence of residual structure around Trp 276 in 5 M guanidine hydrochloride (GdnHCl) was shown by fluorescence and circular dichroism spectroscopy and fluorescence lifetime experiments. The residual structure was disrupted in the presence of 5 M guanidine thiocyanate (GdnSCN). Protein refolding studies showed that significant refolding could be achieved from the GdnHCl denatured state but not the GdnSCN denatured form. The implications of these data on the folding and misfolding of the serpin superfamily are discussed.  相似文献   

10.
The native form of inhibitory serine protease inhibitors (serpins) is strained, which is critical for their inhibitory activity. Previous studies on stabilizing mutations of alpha(1)-antitrypsin, a prototype of serpins, indicated that cavities provide a structural basis for the native strain of the molecule. We have systematically mapped the cavities of alpha(1)-antitrypsin that play such structural and functional roles by designing cavity-filling mutations at residues that line the walls of the cavities. Results show that energetically unfavorable cavities are distributed throughout the alpha(1)-antitrypsin molecule, and the cavity-filling mutations stabilized the native conformation at 8 out of 10 target sites. The stabilization effect of the individual cavity-filling mutations of alpha(1)-antitrypsin varied (0.2-1.9 kcal/mol for each additional methylene group) and appeared to depend largely on the structural flexibility of the cavity environment. Cavity-filling mutations that decreased inhibitory activity of alpha(1)-antitrypsin were localized in the loop regions that interact with beta-sheet A distal from the reactive center loop. The results are consistent with the notion that beta-sheet A and the structure around it mobilize when alpha(1)-antitrypsin forms a complex with a target protease.  相似文献   

11.
Antichymotrypsin (SERPINA3) is a widely expressed member of the serpin superfamily, required for the regulation of leukocyte proteases released during an inflammatory response and with a permissive role in the development of amyloid encephalopathy. Despite its biological significance, there is at present no available structure of this serpin in its native, inhibitory state. We present here the first fully refined structure of a murine antichymotrypsin orthologue to 2.1 A, which we propose as a template for other antichymotrypsin-like serpins. A most unexpected feature of the structure of murine serpina3n is that it reveals the reactive center loop (RCL) to be partially inserted into the A beta-sheet, a structural motif associated with ligand-dependent activation in other serpins. The RCL is, in addition, stabilized by salt bridges, and its plane is oriented at 90 degrees to the RCL of antitrypsin. A biochemical and biophysical analysis of this serpin demonstrates that it is a fast and efficient inhibitor of human leukocyte elastase (ka: 4 +/- 0.9 x 10(6) m(-1) s(-)1) and cathepsin G (ka: 7.9 +/- 0.9 x 10(5) m(-1) s(-)1) giving a spectrum of activity intermediate between that of human antichymotrypsin and human antitrypsin. An evolutionary analysis reveals that residues subject to positive selection and that have contributed to the diversity of sequences in this sub-branch (A3) of the serpin superfamily are essentially restricted to the P4-P6' region of the RCL, the distal hinge, and the loop between strands 4B and 5B.  相似文献   

12.
Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations'' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.  相似文献   

13.
The native form of serpins (serine protease inhibitors) is metastable, which is critical to their biological functions. Spontaneous conversion from the native form of serpins into a more stable conformation, called the "latent" form, is restricted. To examine whether the connectivity of strand 1 of beta-sheet C to the hydrophobic core is critical to the serpin's preferential folding to the metastable native conformation, we designed a circularly-permuted mutant of alpha(1)-antitrypsin, the prototype serpin, in which strand 1C is disconnected from the hydrophobic core. Conformation of the circular permutant was similar to that of the latent form, as revealed by equilibrium unfolding, limited proteolysis, and spectroscopic properties. Our results support the notion that rapid folding of the hydrophobic core with concomitant incorporation of strand 1C into beta-sheet C traps the serpin molecule into its native metastable conformation.  相似文献   

14.
The serpin superfamily encompasses hundreds of proteins, spread across all kingdoms of life, linked by a common tertiary fold. This review focuses on five diseases caused by serpin dysfunction: variants of antithrombin III lose their ability to interact with heparin; the alpha1-antitrypsin Pittsburgh mutation causes a change in target proteinase; the alpha1-antitrypsin Z mutation and neuroserpin, polymerisation of which lead to cellular cytotoxicity; and a loss of maspin expression resulting in cancer.  相似文献   

15.
Alpha(1)-antitrypsin functions as a "mousetrap" to inhibit its target proteinase, neutrophil elastase. The common severe Z deficiency variant (Glu(342)-->Lys) destabilizes the mousetrap to allow a sequential protein-protein interaction between the reactive-centre loop of one molecule and beta-sheet A of another. These loop-sheet polymers accumulate within hepatocytes to form inclusion bodies that are associated with juvenile cirrhosis and hepatocellular carcinoma. The lack of circulating protein predisposes the Z alpha(1)-antitrypsin homozygote to emphysema. Loop-sheet polymerization is now recognized to underlie deficiency variants of other members of the serine proteinase inhibitor (serpin) superfamily, i.e. antithrombin, C1 esterase inhibitor and alpha(1)-antichymotrypsin, which are associated with thrombosis, angio-oedema and emphysema respectively. Moreover, we have shown recently that the same process in a neuron-specific protein, neuroserpin, underlies a novel inclusion-body dementia, known as familial encephalopathy with neuroserpin inclusion bodies. Our understanding of the structural basis of polymerization has allowed the development of strategies to prevent the aberrant protein-protein interaction in vitro. This must now be achieved in vivo if we are to treat the associated clinical syndromes.  相似文献   

16.
The native forms of common globular proteins are in their most stable state but the native forms of plasma serpins (serine protease inhibitors) show high energy state interactions. The high energy state strain of alpha(1)-antitrypsin, a prototype serpin, is distributed throughout the whole molecule, but the strain that regulates the function directly appears to be localized in the region where the reactive site loop is inserted during complex formation with a target protease. To examine the functional role of the strain at other regions of alpha(1)-antitrypsin, we increased the stability of the molecule greatly via combining various stabilizing single amino acid substitutions that did not affect the activity individually. The results showed that a substantial increase of stability, over 13 kcal mol(-1), affected the inhibitory activity with a correlation of 11% activity loss per kcal mol(-1). Addition of an activity affecting single residue substitution in the loop insertion region to these very stable substitutions caused a further activity decrease. The results suggest that the native strain of alpha(1)-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.  相似文献   

17.
The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization.  相似文献   

18.
Protein misfolding plays a role in the pathogenesis of many diseases. alpha1-Antitrypsin misfolding leads to the accumulation of long chain polymers within the hepatocyte, reducing its plasma concentration and predisposing the patient to emphysema and liver disease. In order to understand the misfolding process, it is necessary to examine the folding of alpha1-antitrypsin through the different structures involved in this process. In this study we have used a novel technique in which unique cysteine residues were introduced at various positions into alpha1-antitrypsin and fluorescently labeled with N, N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)ethylenediamine. The fluorescence properties of each protein were studied in the native state and as a function of guanidine hydrochloride-mediated unfolding. The studies found that alpha1-antitrypsin unfolded through a series of intermediate structures. From the position of the fluorescence probes, the fluorescence quenching data, and the molecular modeling, we show that unfolding of alpha1-antitrypsin occurs via disruption of the A and C beta-sheets followed by the B beta-sheet. The implications of these data on both alpha1-antitrypsin function and polymerization are discussed.  相似文献   

19.
alpha 1-Antitrypsin (alpha 1-AT) is the best-characterized member of the serpin superfamily of plasma proteins. Protease inhibitor members of this family undergo a characteristic reactive-center cleavage during expression of their inhibitory activity. The physical basis of this transition in alpha 1-AT from the stressed native conformation to the more stable reactive center cleaved (split) form was studied by Fourier transform infrared (FT-IR) spectroscopy and neutron scattering. The FT-IR spectra show that, while split alpha 1-AT has three intense well-resolved components associated with the presence of antiparallel beta-sheet and alpha-helix conformations, the amide I band of native alpha 1-AT has only one intense component, associated with the presence of beta-sheet structure. 1H-2H exchange within the polypeptide backbone, studied by FT-IR and NMR spectroscopy, shows that the native form undergoes greater exchange than the split form. Under the same conditions, neutron scattering shows no differences in the radius of gyration RG of the native and the split forms. In contrast, in high concentrations of phosphate approaching those used for crystallization, the native form (unlike the split form) undergoes dimerization. These data indicate that the conformational transition largely involves localized secondary and tertiary structure rearrangements. We propose that the energetically stressed native alpha 1-AT structure is the consequence of a significantly reduced number of hydrogen bonds in secondary structure components and that reactive-site cleavage between Met358 and Ser359 is the key for the development of the fully hydrogen bonded more stable serpin structure.  相似文献   

20.
alpha(1)-Antitrypsin is the most abundant protease inhibitor in plasma and is the archetype of the serine protease inhibitor superfamily. Genetic variants of human alpha(1)-antitrypsin are associated with early-onset emphysema and liver cirrhosis. However, the detailed molecular mechanism for the pathogenicity of most variant alpha(1)-antitrypsin molecules is not known. Here we examined the structural basis of a dozen deficient alpha(1)-antitrypsin variants. Unlike most alpha(1)-antitrypsin variants, which were unstable, D256V and L41P variants exhibited extremely retarded protein folding as compared with the wild-type molecule. Once folded, however, the stability and inhibitory activity of these variant proteins were comparable to those of the wild-type molecule. Retarded protein folding may promote protein aggregation by allowing the accumulation of aggregation-prone folding intermediates. Repeated observations of retarded protein folding indicate that it is an important mechanism causing alpha(1)-antitrypsin deficiency by variant molecules, which have to fold into the metastable native form to be functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号