首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests that unreplicated DNA inhibits p34cdc2/cyclin B activation by maintaining cdc25-C in a low activity, dephosphorylated state, probably by keeping the activity of a type-2A protein phosphatase towards cdc25-C at a high level.  相似文献   

2.
Cyclin B targets p34cdc2 for tyrosine phosphorylation.   总被引:28,自引:7,他引:21       下载免费PDF全文
L Meijer  L Azzi    J Y Wang 《The EMBO journal》1991,10(6):1545-1554
A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.  相似文献   

3.
The regulation of p34cdc2 was investigated by overproducing p34cdc2, cyclin (A and B) and the wee1+ gene product (p107wee1) using a baculoviral expression system. p34cdc2 formed a functional complex with both cyclins as judged by co-precipitation, phosphorylation of cyclin in vitro, and activation of p34cdc2 histone H1 kinase activity. Co-production of p34cdc2 and p107wee1 in insect cells resulted in a minor population of p34cdc2 that was phosphorylated on tyrosine and displayed an altered electrophoretic mobility. When p34cdc2 and p107wee1 were co-produced with cyclin (A or B) in insect cells, there was a dramatic increase in the population of p34cdc2 that was phosphorylated on tyrosine and that displayed a shift in electrophoretic mobility. The phosphorylation of p34cdc2 on tyrosine was absolutely dependent upon the presence of kinase-active p107wee1. Tyrosine-specific as well as serine/threonine-specific protein kinase activities co-immunoprecipitated with p107wee1. These results suggest that cyclin functions to facilitate tyrosine phosphorylation of p34cdc2 and that p107wee1 functions to regulate p34cdc2, either directly or indirectly, by tyrosine phosphorylation.  相似文献   

4.
Site-specific analysis of tyrosine hydroxylase phosphorylation in rat pheochromocytoma led previously to the identification of a novel growth factor-sensitive serine/threonine protein kinase, designated proline-directed protein kinase (PDPK). In this article we describe further the activation, purification, subunit configuration, and biochemical characteristics of this cytoplasmic enzyme system. In human A431 epidermoid carcinoma cells PDPK activity was found to be stimulated by epidermal growth factor in a dose-dependent, time-dependent manner. The PDPK purified from the cytosol of mouse FM3A mammary carcinoma cells exhibited the same chromatographic behavior and biochemical properties as the tyrosine hydroxylase-associated enzyme purified originally from rat pheochromocytoma. The presence of p34cdc2 was ultimately detected in all active fractions of highly purified PDPK by Western blotting and immunoprecipitation; however, it was determined that this catalytic subunit is complexed with a 58-kDa regulatory subunit that is clearly distinct from that of the "growth-associated" M phase-specific histone H1 kinase (i.e. cyclin B). The 58 kDa regulatory subunit of PDPK was identified by direct immunoblotting as a mammalian A-type cyclin. Furthermore, the p58cyclin A subunit of PDPK was found to be phosphorylated on tyrosine residues in vivo and in vitro, the latter of which resulted in a significant increase in PDPK activity. Additional distinctions between this growth factor-sensitive PDPK (p34cdc2-p58cyclin A) and the M phase-specific histone H1 kinase (p34cdc2-p62cyclin B-p13suc1) are identified on the basis of chromatographic behavior, enzyme kinetics, and physicochemical properties. Based on these findings, it is proposed that PDPK represents a unique complex of the p34cdc2 protein kinase which is active in the cytoplasm of proliferative cells, is regulated differently from the M phase-specific histone H1 kinase by phosphorylation reactions, and is modulated selectively by growth factors.  相似文献   

5.
Numerous studies of cell cycle control in dividing cells have pointed to the central role of a 34-kDa histone H1 kinase (p34cdc2) complexed with regulatory subunits known as cyclins. We now report that p34cdc2-cyclin may also participate in signal transduction in nonproliferating, terminally differentiated cells, in this instance during sheep platelet activation. Immunological evidence for the presence of a p34cdc2 cognant in sheep platelet cytosol was obtained with antipeptide antibodies raised against peptide sequences in the conserved PSTAIRE and C-terminus regions of murine cdc2. The immunoreactive 32-kDa protein was adsorbed onto p13suc1-Sepharose, which selectively binds p34cdc2. A 58-kDa protein that also bound to p13suc1-Sepharose was identified as cyclin A on the basis of its size and immunoreactivity with two different anticyclin peptide antibodies. The p34cdc2-cyclin A complex was regulated during platelet activation. Its histone H1 phosphorylating activity was stimulated 2-fold in p13suc1-Sepharose extracts from platelets that had been exposed to platelet-activating factor or thrombin for 1 min prior to harvesting. Our findings imply that the p34cdc2-cyclin complex may serve alternative functions besides control of cell division.  相似文献   

6.
A so-called 'growth-associated' or 'M-phase specific' histone H1 kinase (H1K) has been described in a wide variety of eukaryotic cell types; p34cdc2 has previously been shown to be a catalytic subunit of this protein kinase. In fertilized sea urchin eggs the activity of H1K oscillates during the cell division cycle and there is a striking temporal correlation between H1K activation and the accumulation of a phosphorylated form of cyclin. H1K activity declines in parallel with proteolytic cyclin destruction of the end of the first cell cycle. By virtue of the high affinity of the fission yeast p13suc1 for the p34cdc2 protein, H1K strongly binds to p13-Sepharose beads. Cyclin, p34cdc2 and H1K co-purify on this affinity reagent as well as through several conventional chromatographic procedures. Anticyclin antibodies immunoprecipitate the M-phase specific H1K in crude extracts or in purified fractions. Sea urchin eggs appear to contain much less cyclin than p34cdc2, suggesting that p34cdc2 may interact with other proteins. These results demonstrate that cyclin and p34cdc2 are major components of the M-phase specific H1K.  相似文献   

7.
Microinjection of a bacterially expressed stable delta 90 sea urchin cyclin B into Xenopus prophase oocytes, in absence or presence of cycloheximide, provokes the activation of histone H1 kinase and the tyrosine dephosphorylation of p34cdc2. Unexpectedly, when prophase oocytes are submitted to a treatment known to elevate the intracellular cAMP level (3-isobutyl-1-methylxanthine and cholera toxin), delta 90 cyclin has no effect and the oocytes remain blocked in prophase. This inhibition is reverted by the microinjection of the inhibitor of cAMP-dependent protein kinase. When delta 90 cyclin is microinjected into oocytes depleted of endogenous cyclins (cycloheximide-treated metaphase I) and in the presence of a high intracellular concentration of cAMP, p34cdc2 kinase is tyrosine rephosphorylated. Altogether, our results indicate that in Xenopus oocyte, cAMP-dependent protein kinase (A-kinase) controls the formation of the cyclin B/p34cdc2 complex which remains inactive and tyrosine phosphorylated.  相似文献   

8.
Cyclin-dependent kinase complexes that contain the same catalytic subunit are able to induce different events at different times during the cell cycle, but the mechanisms by which they do so remain largely unknown. To address this problem, we have used affinity chromatography to identify proteins that bind specifically to mitotic cyclins, with the goal of finding proteins that interact with mitotic cyclins to carry out the events of mitosis. This approach has led to the identification of a 60-kD protein called NAP1 that interacts specifically with members of the cyclin B family. This interaction has been highly conserved during evolution: NAP1 in the Xenopus embryo interacts with cyclins B1 and B2, but not with cyclin A, and the S. cerevisiae homolog of NAP1 interacts with Clb2 but not with Clb3. Genetic experiments in budding yeast indicate that NAP1 plays an important role in the function of Clb2, while biochemical experiments demonstrate that purified NAP1 can be phosphorylated by cyclin B/p34cdc2 kinase complexes, but not by cyclin A/p34cdc2 kinase complexes. These results suggest that NAP1 is a protein involved in the specific functions of cyclin B/p34cdc2 kinase complexes. In addition to NAP1, we found a 43-kD protein in Xenopus that is homologous to NAP1 and also interacts specifically with B-type cyclins. This protein is the Xenopus homolog of the human SET protein, which was previously identified as part of a putative oncogenic fusion protein (Von Lindern et al., 1992).  相似文献   

9.
INH, a negative regulator of MPF, is a form of protein phosphatase 2A.   总被引:54,自引:0,他引:54  
MPF, a protein kinase complex consisting of cyclin and p34cdc2 subunits, promotes the G2 to M phase transition in eukaryotic cells. The pathway of activation and inactivation of MPF is not well understood, although there is strong evidence that removal of phosphate from a tyrosine residue on p34cdc2 is part of the activation process. INH was originally identified as an activity that could inhibit the posttranslational activation of a latent form of MPF, called pre-MPF, in immature (G2 phase-arrested) Xenopus oocytes. We have purified INH and demonstrated that it is a form of protein phosphatase 2A. Both INH and the catalytic subunit of protein phosphatase 2A can directly inactivate an isolated p34cdc2-cyclin complex. Both cyclin and p34cdc2 become dephosphorylated; the rate of inactivation closely parallels the removal of phosphate from a specific site on p34cdc2. We propose that INH opposes MPF activation by reversing this critical phosphorylation.  相似文献   

10.
C Smythe  J W Newport 《Cell》1992,68(4):787-797
In cell-free extracts derived from Xenopus eggs which oscillate between S phase and mitosis, incompletely replicated DNA blocks the activation of p34cdc2-cyclin by maintaining p34cdc2 in a tyrosine-phosphorylated form. We used a recombinant cyclin fusion protein to generate a substrate to measure the ability of the tyrosine kinase(s) to phosphorylate and inactivate p34cdc2 in the absence of tyrosine phosphatase activity. p34cdc2 tyrosine phosphorylation is highly regulated during the cell cycle, being elevated in S phase and attenuated in mitosis. The elevation in p34cdc2 tyrosine phosphorylation rate occurs in response to the presence of incompletely replicated DNA. Moreover, okadaic acid and caffeine, which uncouple the dependence of mitosis on the completion of S phase, increase unphosphorylated p34cdc2 by attenuating tyrosine kinase function. These data indicate that the control system, which monitors the state of DNA replication, modulates the function of the tyrosine kinase by a phosphorylation/dephosphorylation mechanism, ensuring that mitosis occurs only when S phase is complete.  相似文献   

11.
Tyrosine-phosphorylated p34cdc2 and cyclin B2 are present and physically associated in small growing stage IV oocytes (800 microns in diameter) of Xenopus laevis. Microinjection of M-phase promoting factor (MPF) into stage IV oocytes induces germinal vesicle breakdown and the activation of the kinase activity of the p34cdc2/cyclin B2 complex measured on p13suc1 beads. During the in vivo activation of MPF in stage IV oocytes, p34cdc2 tyrosine dephosphorylation is not detectable, in contrast to stage VI oocytes. Addition of cycloheximide in MPF-injected stage IV oocytes induces neither the inhibition of histone H1 kinase activity nor the cyclin B2 degradation. Therefore, the activation mechanism of histone H1 kinase in stage IV oocytes does not require detectable tyrosine dephosphorylation of p34cdc2. It is suggested rather that the tyrosine phosphorylation of p34cdc2 plays a role in inhibiting cyclin B2 degradation.  相似文献   

12.
The mitotic inducer p34cdc2 requires association with a cyclin and phosphorylation on Thr161 for its activity as a protein kinase. CAK, the p34cdc2 activating kinase, was previously identified as an enzyme necessary for this activating phosphorylation. We confirm here that CAK is a protein kinase and describe its purification over 13,000-fold from Xenopus egg extracts. We further show that CAK contains a protein identical or closely related to the previously identified Xenopus MO15 gene: p40MO15 copurifies with CAK, and an antiserum to p40MO15 specifically depletes cAK activity. CAK appears to be the only protein in Xenopus egg extracts that can activate complexes of either p34cdc2 or the closely related protein kinase, p33cdk2, with either cyclin A or cyclin B. The sequence similarity between p40MO15 and p34cdc2, and the approximately 200 kDa size of CAK, suggest that p40MO15 may itself be regulated by subunit association and by protein phosphorylations.  相似文献   

13.
The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.  相似文献   

14.
The protein kinase activity of the cell cycle regulator p34cdc2 is inactivated when the mitotic cyclin to which it is bound is degraded. The amino (N)-terminus of mitotic cyclins includes a conserved "destruction box" sequence that is essential for degradation. Although the N-terminus of sea urchin cyclin B confer cell cycle-regulated degradation to a fusion protein, a truncated protein containing only the N-terminus of Xenopus cyclin B2, including the destruction box, is stable under conditions where full length molecules are degraded. In an attempt to identify regions of cyclin B2, other than the destruction box, involved in degradation, the stability of proteins encoded by C-terminal deletion mutants of cyclin B2 was examined in Xenopus egg extracts. Truncated cyclin with only the first 90 amino acids was stable, but other C-terminal deletions lacking between 14 and 187 amino acids were unstable and were degraded by a mechanism that was neither cell cycle regulated nor dependent upon the destruction box. None of the C-terminal deletion mutants bound p34cdc2. To investigate whether the binding of p34cdc2 is required for cell cycle-regulated degradation, the behavior of proteins encoded by a series of full length Xenopus cyclin B2 cDNA with point mutations in conserved amino acids in the p34cdc2-binding domain was examined. All of the point mutants failed to form stable complexes with p34cdc, and their degradation was markedly reduced compared to wild-type cyclin. Similar results were obtained when the mutant cyclins were synthesized in reticulocyte lysates and when cyclin mRNA was translated directly in a Xenopus egg extract. These results indicate that mutations that interfere with p34cdc2 binding also interfere with cyclin destruction, suggesting that p34cdc2 binding is required for the cell cycle-regulated destruction of Xenopus cyclin B2.  相似文献   

15.
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells.  相似文献   

16.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

17.
The activity of the cell cycle control protein p34cdc2 is post-translationally regulated in a variety of cell types. Using anti-phosphotyrosine antibodies, we find that p34cdc2-directed tyrosine kinase activity increases at fertilization in sea urchin eggs, leading to a gradual accumulation of phosphotyrosine on p34 during the early part of the cell cycle. Loss of phosphotyrosine from p34 accompanies entry into mitosis and phosphotyrosine reaccumulates as the embryo enters the next cell cycle. A similar pattern is seen when eggs are parthenogenetically activated with ammonium chloride. Tyrosine phosphorylation and phosphorylation/dephosphorylation cycles are suppressed when embryos are treated with the tyrosine kinase inhibitor genistein. On the other hand, a cycle persists when protein synthesis is inhibited with emetine, indicating that it is independent of the synthesis of another class of cell cycle control proteins, the cyclins. Additional experiments with the phorbol ester, phorbol myristate acetate, demonstrate that activating protein synthesis alone in unfertilized eggs does not result in stimulation of p34cdc2 tyrosine kinase activity. Our results indicate that p34 tyrosine phosphorylation cycles are triggered by the fertilization Cai transient. The first cycle is independent of the fertilization pHi signal, confirming that, in sea urchin embryos, the cycle is not tightly coupled to the cycle of cyclin abundance that is a prominent feature of the eukaryotic cell division cycle.  相似文献   

18.
We have investigated the mechanisms responsible for the sudden activation of the cdc2-cyclin B protein kinase before mitosis. It has been found previously that cdc25 is the tyrosine phosphatase responsible for dephosphorylating and activating cdc2-cyclin B. In Xenopus eggs and early embryos a cdc25 homologue undergoes periodic phosphorylation and activation. Here we show that the catalytic activity of human cdc25-C phosphatase is also activated directly by phosphorylation in mitotic cells. Phosphorylation of cdc25-C in mitotic HeLa extracts or by cdc2-cyclin B increases its catalytic activity. cdc25-C is not a substrate of the cyclin A-associated kinases. cdc25-C is able to activate cdc2-cyclin B1 in Xenopus egg extracts and to induce Xenopus oocyte maturation, but only after stable thiophosphorylation. This demonstrates that phosphorylation of cdc25-C is required for the activation of cdc2-cyclin B and entry into M-phase. Together, these studies offer a plausible explanation for the rapid activation of cdc2-cyclin B at the onset of mitosis and the self-amplification of MPF observed in vivo.  相似文献   

19.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

20.
Xenopus oocytes and the biochemistry of cell division   总被引:31,自引:0,他引:31  
J L Maller 《Biochemistry》1990,29(13):3157-3166
The control of cell proliferation involves both regulatory events initiated at the plasma membrane that control reentry into the cell cycle and intracellular biochemical changes that direct the process of cell division itself. Both of these aspects of cell growth control can be studied in Xenopus oocytes undergoing meiotic maturation in response to mitogenic stimulation. All mitogenic signaling pathways so far identified lead to the phosphorylation of ribosomal protein S6 on serine residues, and the biochemistry of this event has been investigated. Insulin and other mitogens activate ribosomal protein S6 kinase II, which has been cloned and sequences in oocytes and other cells. This enzyme is activated by phosphorylation on serine and threonine residues by an insulin-stimulated protein kinase known as MAP-2 kinase. MAP kinase itself is also activated by direct phosphorylation on threonine and tyrosine residues in vivo. These results reconstitute one step of the insulin signaling pathway evident shortly after insulin receptor binding at the membrane. Several hours after mitogenic stimulation, a cell cycle cytoplasmic control element is activated that is sufficient to cause entry into M phase. This control element, known as maturation-promoting factor or MPF, has been purified to near homogeneity and shown to consist of a complex between p34cdc2 protein kinase and cyclin B2. In addition to apparent phosphorylation of cyclin, regulation of MPF activity involves synthesis of the cyclin subunit and its periodic degradation at the metaphase----anaphase transition. The p34cdc2 kinase subunit is regulated by phosphorylation/dephosphorylation on threonine and tyrosine residues, being inactive when phosphorylated and active when dephosphorylated. Analysis of phosphorylation sides in histone H1 for p34cdc2 has revealed a consensus sequence of (K/R)S/TP(X)K/R, where the elements in parentheses are present in some but not all sites. Sites with such a consensus are specifically phosphorylated in mitosis and by MPF in the protooncogene pp60c-src. These results provide a link between cell cycle control and cell growth control and suggest that changes in cell adhesion and the cytoskeleton in mitosis may be regulated indirectly by MPF via protooncogene activation. S6 kinase II is also activated upon expression of MPF in cells, indicating that MPF is upstream of S6 kinase on the mitogenic signaling pathway. Further study both of the signaling events that lead to MPF activation and of the substrates for phosphorylation by MPF should lead to a comprehensive understanding of the biochemistry of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号