首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIalpha and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150-200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200-300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial "glue."  相似文献   

2.
Demonstration of membranous patches on isolated chromosomes   总被引:1,自引:0,他引:1  
High resolution scanning electron microscopy of isolated Chinese hamster ovary metaphase chromosomes revealed “membranous patches” at telomeric and juxtatelomeric regions of the chromosomes. The “membranous patches” remained bound to the chromosomes during centrifugation through dense sucrose, but not after treatment with detergents. These membrane fragments on isolated purified chromosomes may represent a component that binds the chromosome to the inner portion of the nuclear envelope up to late stages of prophase. These chromosome associated membranous patches may represent sites of reformation of the nuclear envelope at telophase.  相似文献   

3.
Muntjac prophase and metaphase chromosomes were G-banded following methotrexate-mediated synchronization of peripheral lymphocytes. Bands and subbands were characterized from prophase through metaphase, and the progression of band patterns from late prophase to mid-metaphase was analyzed. Extended prophase chromosomes exhibited more bands and subbands, a number of which became fused with each other, giving rise to fewer and thicker bands in the condensed metaphase chromosomes. It appeared that the dark bands condensed relatively more than the light bands. Precise delineation of the bands and subbands on extended prophase chromosomes and the usage of a proposed banding pattern nomenclature should aid in better detection and localization of induced chromosomal rearrangements with this extremely useful experimental material.  相似文献   

4.
RAD51C is a member of the RecA/RAD51 protein family, which is known to play an important role in DNA repair by homologous recombination. In mice, it is essential for viability. Therefore, we have generated a hypomorphic allele of Rad51c in addition to a null allele. A subset of mice expressing the hypomorphic allele is infertile. This infertility is caused by sexually dimorphic defects in meiotic recombination, revealing its two distinct functions. Spermatocytes undergo a developmental arrest during the early stages of meiotic prophase I, providing evidence for the role of RAD51C in early stages of RAD51-mediated recombination. In contrast, oocytes can progress normally to metaphase I after superovulation but display precocious separation of sister chromatids, aneuploidy, and broken chromosomes at metaphase II. These defects suggest a possible late role of RAD51C in meiotic recombination. Based on the marked reduction in Holliday junction (HJ) resolution activity in Rad51c-null mouse embryonic fibroblasts, we propose that this late function may be associated with HJ resolution.  相似文献   

5.
Four different methods including trypsin urea, SDS and NaOH are presented for the in situ induction of G-bands and macrocoils on the chromosomes of Secale cereale, Hordeum vulgare and Vicia faba. The bands obtained were numerous and along the whole chromosome, the number of the G-bands was much interrelated with the condensation of chromosomes. The bands of homologous chromosomes in some cells were matchable. The G-banded chromosomes in late prophase have nearly reached high resolution level. When incubation periods were beyond critical time for G-banding, macrocoils were often revealed. Gyre number changed with chromosome condensation and the direction of coils has showed different patterns. Transformation of G-bands into macrocoils was first reported in plant chromosomes. Some chromosomes showing G-bands under light microscope appeared spiral patterns under scanning electron microscope. In this paper the relationship between G-bands and macrocoils in plant chromosomes is also discussed.  相似文献   

6.
This paper studies the process and features of chromosome construction in mitotic prophase cells of Allium cepa. The results showed that a prominent reorganization of chromatin occurred during G2-early prophase. The 250–400 nm thick compact chromatin threads in G2 nuclei began to disorganize into about 30, 100 and 220 nm chromatin fibres which constituted the loosely organized chromosome outlines in early prophase before chromosome condensation. In middle prophase, chromosome condensation was characterized by the formation of many condensed regions (aggregates of chromatin), which increased in size (1–1.5 m) when prophase proceeded. Meanwhile, the chromatin threads that constituted and connected the condensed regions became increasingly thicker (120–250 nm). In late prophase adjacent condensed regions fused to form cylinder-shaped chromosomes. Based on these observations, we come to the conclusion that the construction of prophase chromosomes is a two-step process, that is, the reorganization and condensation of chromatin. In addition, we report the study of silver-stained, DNA- and histone-depleted prophase chromosomes, describe morphological features of the non-histone protein (NHP) residue in early, middle and late prophase chromosomes, and discuss the roles of NHPs in chromosome construction.  相似文献   

7.
G-banding patterns of high-resolution human chromosomes 6–22, X,and Y   总被引:3,自引:0,他引:3  
Summary A precise schematic representation of the number, height, position, and staining intensity of the Giemsa bands of late prophase, prometaphase, early metaphase, and mid-metaphase chromosomes 6–22, X, and Y is presented. Late prophase chromosomes were found to have 2–21/2 times the length and 3–31/2 times the number of bands previously observed in mid-metaphase, whereas prometaphases and early metaphases were intermediate in length and number of bands. In this work, the maximum number of bands observed per haploid set in late prophase was 1353, while more than 350 were generally found in mid-metaphase.  相似文献   

8.
We describe a method for isolating chromosomes from testes of the desert locust, Schistocerca gregaria, and their subsequent incubation with antibodies directed against chromosomal proteins. The procedure involves hypotonic pretreatment of the germ cells, centrifugation onto coverslips in a cytocentrifuge and immunolabeling, while still unfixed, using a chromatin-stabilizing buffer. In the present case, an antibody specific for the acetylated isoforms of his tone H4 was tested. After the antibody treatment, the preparations are fixed using formaldehyde, stained with a DNA-specific fluorescent dye and mounted. Analysis of the preparations revealed good preservation of chromosome structure in prophase spermatogonia and late prophase I spermatocytes. Fully condensed chromosomes were not observed and are probably lost during preparation. The bright fluorescence of the autosomes indicates that the reaction between the antibody against acetylated histone H4 and its chromosomal antigen is not impeded. In contrast, the X univalent remained unstained with the exception of a small terminal band. Thus, cytospin preparations of locust germ cells allow high resolution immunolabeling with antibodies against chromosome-associated proteins.  相似文献   

9.
In this paper, we report the effects of laser microirradiation of prophase nucleoli and mitotic chromosomes in cells of female rat kangaroo kidney epithelial cell line PTK1. When the laser power delivered to sample surface was 90-190 mW, irradiation of one of the two nucleoli in the prophase cell did not inhibit the mitotic progress, but resulted in the loss of the irradiated nucleolus in daughter cells. When the laser power was increased to 360-420 mW, either irradiation of the nucleolus or chromosome in midprophase caused a blockage of mitosis at terminal midprophase. The irradiated cells returned morphologically to early prophase. No mitotic reversion occurred in the case of irradiation of chromosomes at late prophase, prometaphase, metaphase, and anaphase. Irradiation of the cytoplasm in prophase cells caused a 50-70 min mitotic delay at prophase. However, the irradiated cells underwent successive mitotic divisions. The mechanism of laser-induced mitotic prophase reversion is discussed.  相似文献   

10.
Summary Provisional maps are presented for all acrocentric bivalents and bivalent 9, according to their chromomere patterns at pachytene in the human oocyte. Each G band is subdivided into several sub-bands whose number varies according to the degree of chromosomal compacting. Chromomere number and sequence are in basic agreement with those observed in late prophase mitotic chromosomes. Thus, metaphase G bands of mitotic chromosomes result from progressive compressing together of smaller chromomeres whose individuality disappears as chromosomal condensation increases with progression of prophase.  相似文献   

11.
The treatment of termite male spermatogonia with actinomycin D induces highly elongated and finely banded late prophase and prometaphase chromosomes as evidenced by the silver staining method. Actinomycin D suppresses the silver staining of nucleolar organizing regions in prometaphase and reduces it in metaphase chromosomes.  相似文献   

12.
The treatment of termite male spermatogonia with actinomycin D induces highly elongated and finely banded late prophase and prometaphase chromosomes as evidenced by the silver staining method. Actinomycin D suppresses the silver staining of nucleolar organizing regions in prometaphase and reduces it in metaphase chromosomes.  相似文献   

13.
H H Heng  G Liu  W Lu  S Bremer  C J Ye  M Hughes  P Moens 《Génome》2001,44(2):293-298
The spectral karyotyping procedure of in situ hybridization with chromosome-specific probes assigns a unique colour code to each of the 21 mouse mitotic chromosomes. We have adapted this procedure to meiotic prophase chromosomes, and the results show that each of the pachytene or metaphase I bivalents can be identified. This technique has the potential to recognize synaptic anomalies and chromosome-specific structural and behavioural characteristics. We confirm these potentials by the recognition of the heterologous synapsis of the X and Y chromosomes and by the variances of synaptonemal complex lengths for each of the colour-coded bivalents in eight prophase nuclei.  相似文献   

14.
In this paper, we report the effects of laser microirradiation of prophase nucleoli and mitotic chromosomes in cells of female rat kangaroo kidney epithelial cell line PTK1. When the laser power delivered to sample surface was 90–190 mW, irradiation of one of the two nucleoli in the prophase cell did not inhibit the mitotic progress, but resulted in the loss of the irradiated nucleolus in daughter cells. When the laser power was increased to 360–420 mW, either irradiation of the nucleolus or chromosome in midprophase caused a blockage of mitosis at terminal midprophase. The irradiated cells returned morphologically to early prophase. No mitotic reversion occurred in the case of irradiation of chromosomes at late prophase, prometaphase, metaphase, and anaphase. Irradiation of the cytoplasm in prophase cells caused a 50–70 min mitotic delay at prophase. However, the irradiated cells underwent successive mitotic divisions. The mechanism of laser-induced mitotic prophase reversion is discussed.  相似文献   

15.
The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding patterns, but also radially. Specific MSL3-binding sites, the majority of which have been demonstrated earlier to be dosage compensated DNA sequences, located on the X chromosomes, and actively transcribed in interphase, are positioned at the periphery of mitotic chromosomes. This potentially describes a connection between the DNA/protein content of chromatin loci and their contribution to mitotic chromosome structure. Live high-resolution observations of consecutive condensation states in MSL3-GFP expressing cells could provide additional details regarding the condensation mechanisms.  相似文献   

16.
Prophase chromosomes of growing oocytes from thelytokous, viviparous females of Amphorophora tuberculata Brown and Blackman (n=2) were studied using a modified propionic acid squash technique with Feulgen staining. In early prophase, prior to the growth phase of the oocyte, the X chromosomes are partially condensed and looped together so that all four ends appear to be associated. Later in prophase the X chromosomes separate in oocytes destined to be female, but remain associated in presumptive male oocytes. The autosomes condense gradually throughout prophase. The nucleus of the presumptive male oocyte is further characterised by the formation of a spherical Feulgen-positive body, which attains a large size (7 m diameter) in late prophase. At this stage, the X chromosomes are no longer visible as separate entities, and are apparently included in the spherical body. At metaphase this disappears, leaving the X chromosomes still united as a condensed bivalent. The spherical body seems to have nucleolar as well as chromatin constituents; nucleolar organisers are present at the ends of the X chromosomes where it first arises. It may function in maintaining the cohesion between the X chromosomes through prophase, and could also facilitate correct orientation of the X bivalent on the spindle of the maturation division. As sex determination in aphids is controlled by juvenile hormone concentration, it appears that the hormone may interact with the X chromosomes during prophase, bringing about their separation in female oocytes, perhaps by inhibiting the formation of the spherical body.  相似文献   

17.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

18.
《The Journal of cell biology》1995,131(5):1125-1131
Chromosomes are known to enhance spindle microtubule assembly in grasshopper spermatocytes, which suggested to us that chromosomes might play an essential role in the initiation of spindle formation. Chromosomes might, for example, activate other spindle components such as centrosomes and tubulin subunits upon the breakdown of the nuclear envelope. We tested this possibility in living grasshopper spermatocytes. We ruptured the nuclear envelope during prophase, which prematurely exposed the centrosomes to chromosomes and nuclear sap. Spindle assembly was promptly initiated. In contrast, assembly of the spindle was completely inhibited if the nucleus was mechanically removed from a late prophase cell. Other experiments showed that the trigger for spindle assembly is associated with the chromosomes; other constituents of the nucleus cannot initiate spindle assembly in the absence of the chromosomes. The initiation of spindle assembly required centrosomes as well as chromosomes. Extracting centrosomes from late prophase cells completely inhibited spindle assembly after dissolution of the nuclear envelope. We conclude that the normal formation of a bipolar spindle in grasshopper spermatocytes is regulated by chromosomes. A possible explanation is an activator, perhaps a chromosomal protein (Yeo, J.-P., F. Alderuccio, and B.-H. Toh. 1994a. Nature (Lond.). 367: 288-291), that promotes and stabilizes the assembly of astral microtubules and thus promotes assembly of the spindle.  相似文献   

19.
The normal association between the X and Y chromosomes at metaphase I of meiosis, as seen in air-dried light microscope preparations of mouse spermatocytes, is frequently lacking in the spermatocytes of the sterile interspecific hybrid between the laboratory mouse strains C57BL/6 and Mus spretus. The purpose of this work is to determine whether the separate X and Y chromosomes in the hybrid are asynaptic, caused by failure to pair, or desynaptic, caused by precocious dissociation. Unpaired X-Y chromosomes were observed in air-dried preparations at diakinesis, just prior to metaphase I. Furthermore, immunocytology and electron microscopy studies of surface-spread pachytene spermatocytes indicate that the X and Y chromosomes frequently fail to initiate synapsis as judged by the failure to form a synaptonemal complex between the pairing regions of the X and Y Chromosomes. Several additional chromosomal abnormalities were observed in the hybrid. These include fold-backs of the unpaired X or Y cores, associations between the autosome and sex chromosome cores, and autosomal univalents. The occurrence of abnormal autosomal and XY-autosomal associations was also correlated with cell degeneration during meiotic prophase. The primary breakdown in hybrid spermatogenesis occurs at metaphase I (MI), with the appearance of degenerated cells at late MI. In those cells, the X and Y are decondensed rather than condensed as they are in normal mouse MI spermatocytes. These results, in combination with the previous genetic analysis of spermatogenesis in hybrids and backcrosses with fertile female hybrids, suggest that the spermatogenic breakdown in the interspecific hybrid is primarily correlated with the failure of XY pairing at meiotic prophase, asynapsis, followed by the degeneration of spermatocytes at metaphase I. Secondarily, the failure of XY pairing can be accompanied by failure of autosomal pairing, which appears to involve an abnormal sex vesicle and degeneration at pachytene or diplotene.by C. Heyting  相似文献   

20.
The characterization of high-resolution G-banded chromosomes of man   总被引:26,自引:0,他引:26  
The detailed characterization of G-banding patterns of high resolution human chromosomes has been possible with the utilization of a refined cell synchronization technique which routinely yields a large number of excellent quality cells in late prophase, prometaphase, early metaphase, and mid-metaphase. These mitotic cells exhibit up to a 400% increase in the number of bands previously visualized by standard methods. From studies of the banding patterns, it has become evident that the G-positive and, to some extent, the G-negative bands of mid-metaphase results from a coalescence of finer subbands of earlier stages and that each band and its corresponding subbands maintain a constant location throughout the process of chromosome condensation. A precise schematic representation of the number, position, height and staining intensity of bands is presented for the five largest chromosomes of the complement at the four mitotic stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号