首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The insulin-like growth factor 1 receptor (IGF-1R) is a multifunctional receptor that mediates signals for cell proliferation, differentiation, and survival. Genetic experiments showed that IGF-1R inactivation in skin results in a disrupted epidermis. However, because IGF-1R-null mice die at birth, it is difficult to study the effects of IGF-1R on skin. By using a combined approach of conditional gene ablation and a three-dimensional organotypic model, we demonstrate that IGF-1R-deficient skin cocultures show abnormal maturation and differentiation patterns. Furthermore, IGF-1R-null keratinocytes exhibit accelerated differentiation and decreased proliferation. Investigating the signaling pathway downstream of IGF-1R reveals that insulin receptor substrate 2 (IRS-2) overexpression compensates for the lack of IGF-1R, whereas IRS-1 overexpression does not. We also demonstrate that phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1 and 2 are involved in the regulation of skin keratinocyte differentiation and take some part in mediating the inhibitory signal of IGF-1R on differentiation. In addition, we show that mammalian target of rapamycin plays a specific role in mediating IGF-1R impedance of action on keratinocyte differentiation. In conclusion, these results reveal that IGF-1R plays an inhibitory role in the regulation of skin development and differentiation.  相似文献   

3.
4.
Myofibroblast differentiation and activation by transforming growth factor-beta1 (TGF-beta1) is a critical event in the pathogenesis of human fibrotic diseases, but regulatory mechanisms for this effect are unclear. In this report, we demonstrate that stable expression of the myofibroblast phenotype requires both TGF-beta1 and adhesion-dependent signals. TGF-beta1-induced myofibroblast differentiation of lung fibroblasts is blocked in non-adherent cells despite the preservation of TGF-beta receptor(s)-mediated signaling of Smad2 phosphorylation. TGF-beta1 induces tyrosine phosphorylation of focal adhesion kinase (FAK) including that of its autophosphorylation site, Tyr-397, an effect that is dependent on cell adhesion and is delayed relative to early Smad signaling. Pharmacologic inhibition of FAK or expression of kinase-deficient FAK, mutated by substituting Tyr-397 with Phe, inhibit TGF-beta1-induced alpha-smooth muscle actin expression, stress fiber formation, and cellular hypertrophy. Basal expression of alpha-smooth muscle actin is elevated in cells grown on fibronectin-coated dishes but is decreased on laminin and poly-d-lysine, a non-integrin binding polypeptide. TGF-beta1 up-regulates expression of integrins and fibronectin, an effect that is associated with autophosphorylation/activation of FAK. Thus, a safer and more effective therapeutic strategy for fibrotic diseases characterized by persistent myofibroblast activation may be to target this integrin/FAK pathway while not interfering with tumor-suppressive functions of TGF-beta1/Smad signaling.  相似文献   

5.
6.
Various matrix growth factors play important roles in the development and growth of cartilage and bone. Among them transforming growth factor-beta superfamily and especially bone morphogenetic proteins are known to be important factors, since they induce bone and cartilage formation in ectopic sites in vivo. We have previously shown that the human osteosarcoma cell line Saos-2 expresses molecules that in vivo induce new bone formation with asymmetric bone maturation. In this study we examined the role of Saos-2-conditioned medium in prolonged cultures of mesenchymal C3H/10T1/2 cells. The C3H/10T1/2 cells were cultured with Saos-2-conditioned medium for 28 days. We show that Saos-2-treated C3H/10T1/2 cells performed retarded osteoblastic differentiation when compared to recombinant BMP-2 and -4 induced differentiation. We further show that this retardation is due to excessive amounts of transforming growth factor-beta in Saos-2-conditioned medium. Our results also suggest that this model can well be used to study additional cofactors involved in retarded osteogenesis.  相似文献   

7.
Gorelik L  Flavell RA 《Nature medicine》2001,7(10):1118-1122
Despite the existence of tumor-specific antigens and demonstrated presence of tumor-specific immune cells, the majority of tumors manage to avoid immune-mediated destruction. Various mechanisms have been suggested for tumor evasion from immune response. One such mechanism is thought to be mediated by transforming growth factor-beta (TGF-beta), an immunosuppressive cytokine found at the site of most tumors. We demonstrate here that T-cell-specific blockade of TGF-beta signaling allows the generation of an immune response capable of eradicating tumors in mice challenged with live tumor cells. In addition, we provide mechanisms through which abrogation of TGF-beta signaling leads to the enhancement of anti-tumor immunity. Our data indicate that T-cell-specific blockade of TGF-beta signaling has strong therapeutic potential to shift the balance of the immune response in favor of anti-tumor immunity.  相似文献   

8.
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.  相似文献   

9.
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.  相似文献   

10.
Transforming growth factor-β (TGF-β) plays a pivotal role in a range of biological processes, including the control of cellular proliferation and differentiation, regulation of tissue repair and extracellular matrix accumulation, and modulation of the immune and inflammatory responses. The role of TGF-β in the pathogenesis of atherosclerosis, which is widely perceived as a form of chronic inflammation, has been the subject of debate for a number of years. A pro-atherogenic role was suspected because of its ability to promote fibrosis and to inhibit endothelial regeneration. However, several recent studies have shown that TGF-β limits atherosclerosis by modulating a number of processes, including the accumulation of lipids in the vessel wall and the inflammatory response. This review will discuss the role of TGF-β in atherosclerosis along with the molecular mechanisms underlying its action during the pathogenesis of the disease.  相似文献   

11.
We examined the localization of transforming growth factor (TGF)-beta in first-trimester and term human decidua and chorionic villi and explored the role of this factor on the proliferation and differentiation of cultured trophoblast cells. Two antibodies, 1D11.16.8, a mouse monoclonal neutralizing antibody capable of recognizing both TGF-beta 1 and TGF-beta 2 and CL-B1/29, a rabbit polyclonal antibody capable of recognizing TGF-beta 2, were used to immunolocalize TGF-beta in fixed, paraffin-embedded, or fixed, frozen sections of placenta and decidua, providing similar results. Intense labeling was observed in the extracellular matrix (ECM) of the first-trimester decidua and cytoplasm of term decidual cells. Syncytiotrophoblast cell cytoplasm as well as the ECM in the core of the chorionic villi of both first-trimester and term placentas exhibited a moderate degree of labeling. Strong cytoplasmic labeling was observed in the cytotrophoblastic shell of the term placenta. To examine the role of TGF-beta on trophoblast proliferation and differentiation, early passage cultures of first-trimester and primary cultures of term trophoblast cells were established and characterized on the basis of numerous immunocytochemical and functional markers. These cells expressed cytokeratin, placental alkaline phosphatase, urokinase-type plasminogen activator, and pregnancy-specific beta glycoprotein, but not factor VIII or 63D3; they also produced hCG and collagenase type IV. Exposure of first-trimester trophoblast cultures to TGF-beta 1 significantly inhibited proliferation in a dose-dependent manner. An antiproliferative effect was also noted in the presence of TGF-beta 2. These effects were abrogated in the presence of the neutralizing anti-TGF-beta antibody (1D11.16.8) in a concentration-dependent manner. In a 3-day culture, exogenous TGF-beta 1 stimulated formation of multinucleated cells by the first trimester as well as term trophoblast cells. Addition of neutralizing anti-TGF-beta antibody to first-trimester trophoblast cells stimulated proliferation beyond control levels in a 24-h culture and reduced formation of multinucleated cells in a 3-day culture, indicating the presence of endogenous TGF-beta activity. These results indicate that TGF-beta produced at the human fetal-maternal interface plays a major regulatory role in the proliferation and differentiation of the trophoblast.  相似文献   

12.
Because survival and growth of human hepatoma cells are maintained by nutrient, especially glucose, glucose starvation induces acute cell death. The cell death is markedly suppressed by hypoxia, and we have reported involvement of AMP-activated protein kinase-alpha (AMPK-alpha), Akt, and ARK5 in hypoxia-induced tolerance. In the current study we investigated the mechanism of hypoxia-induced tolerance in human hepatoma cell line HepG2. ARK5 expression was induced in HepG2 cells when they were subjected to glucose starvation, and we found that glucose starvation transiently induced Akt and AMPK-alpha phosphorylation and that hypoxia prolonged phosphorylation of both protein kinases. We also found that hypoxia-induced tolerance was partially abrogated by blocking the Akt/ARK5 system or by suppressing AMPK-alpha expression and that suppression of both completely abolished the tolerance, suggesting that AMPK-alpha activation signaling and the Akt/ARK5 system play independent essential roles in hypoxia-induced tolerance. By using chemical compounds that specifically inhibit kinase activity of type I-transforming growth factor-beta (TGF-beta) receptor, we showed an involvement of TGF-beta in hypoxia-induced tolerance. TGF-beta1 mRNA expression was induced by hypoxia in an hypoxia-inducible factor-1alpha-independent manner, and addition of recombinant TGF-beta suppressed cell death during glucose starvation even under normoxic condition. AMPK-alpha, Akt, and ARK5 were activated by TGF-beta1, and Akt and AMPK-alpha phosphorylation, which was prolonged by hypoxia, was suppressed by an inhibitor of type I TGF-beta receptor. Based on these findings, we propose that hypoxia-induced tumor cell tolerance to glucose starvation is caused by hypoxia-induced TGF-beta1 through AMPK-alpha activation and the Akt/ARK5 system.  相似文献   

13.
14.
15.
The role of proteases in transforming growth factor-beta activation   总被引:2,自引:0,他引:2  
Transforming growth factor-beta (TGFbeta) plays a central role in a number of developmental and pathological processes. There are 3 isoforms of TGFbeta (1-3) and all are sequestered in the extracellular matrix as latent complexes. Activation of this complex is the key biological checkpoint controlling TGF-beta bioavailability. This process is tightly regulated in a temporal, spatial and isoform specific manner highlighting its importance. There are many different mechanisms by which TGF-beta can be activated. Both serine and metalloproteinases play an important role in TGF-beta activation, at least in vitro, and many of these proteases have been implicated in pathological conditions. The mechanism of activation is distinct between the different proteases, but is not conserved between the two groups. Both serine proteases, such as plasmin, and metalloproteases, such as MMP2, can directly cleave latent TGFbeta, whereas others, such as thrombin and MMP14, interact with integrin mediated TGFbeta activation pathways. However, further studies are still required to fully understand the relevance of all of these pathways in vivo. Currently, the best described mechanism of TGF-beta1 activation in vivo is by integrins, although this process can be modulated by proteases. The primary mechanism of TGF-beta2 and TGF-beta3 activation has yet to be defined in vivo, although it is likely that TGF-beta3 is activated in a similar manner to TGF-beta1. This review describes the mechanism of protease driven TGF-beta activation, and discusses the physiological and pathological relevance of this process.  相似文献   

16.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

17.
Lysyl oxidase (LOX), an amine oxidase critical for the initiation of collagen and elastin cross-linking, has recently been shown to regulate cellular activities possibly by modulating the functions of growth factors. In this study, we investigated the interaction between LOX and transforming growth factor-beta1 (TGF-beta1), a potent growth factor abundant in bone, the effect of LOX on TGF-beta1 signaling, and its potential mechanism. The specific binding between mature LOX and mature TGF-beta1 was demonstrated by immunoprecipitation and glutathione S-transferase pulldown assay in vitro. Both proteins were colocalized in the extracellular matrix in an osteoblastic cell culture system, and the binding complex was identified in the mineral-associated fraction of bone matrix. Furthermore, LOX suppressed TGF-beta1-induced Smad3 phosphorylation likely through its amine oxidase activity. The data indicate that LOX binds to mature TGF-beta1 and enzymatically regulates its signaling in bone and thus may play an important role in bone maintenance and remodeling.  相似文献   

18.
19.
It has been widely assumed that the interaction of transforming growth factor-beta 1 (TGF-beta 1) with its serum-binding protein, alpha 2-macroglobulin (alpha 2M), mediates the rapid clearance of TGF-beta 1 from the circulation. To test this, we have analyzed the effect of TGF-beta 1 binding on the conformational state of alpha 2M. Our results demonstrate that the binding of TGF-beta 1 to alpha 2M does not lead to the conformational change in the alpha 2M molecule that is required for the clearance of the alpha 2M.TGF-beta 1 complex via the alpha 2M receptor. Furthermore, endogenous TGF-beta 1 is associated with the conformationally unaltered slow clearance form of alpha 2M. Clearance studies in mice show that the half-life of 125I-TGF-beta 1 in the circulation (1.6 +/- 0.71 min) is not affected by blocking the alpha 2M receptor with excess conformationally altered alpha 2M. These results suggest that TGF-beta 1 is rapidly cleared from the circulation after injection by a pathway not involving alpha 2M.  相似文献   

20.
Osteoarthritis is a common malady of the musculoskeletal system affecting the articular cartilage. The increased frequency of osteoarthritis with aging indicates the complex etiology of this disease, which includes pathophysiology and joint stability including biomechanics. The balance between anabolic morphogens and growth factors and catabolic cytokines is at the crux of the problem of osteoarthritis. One such signal is transforming growth factor-beta (TGF-beta). The impaired TGF-beta signaling has been identified as a culprit in old mice in a recent article in this journal. This commentary places this discovery in the context of anabolic and catabolic signals and articular cartilage homeostasis in the joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号