首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time course, up to 100d, of uptake and metabolism of aldrin and dieldrin added at subculture to suspension cultures from Phaseolus vulgaris (French bean) root and shoot, and Solanum tuberosum (potato) tuber comparable, with rapid dieldrin production and delayed appearance of other metabolites. When aldrin and dieldrin not added to Phaseolus cultures until 10 or 20d after subculture usual extent of conversion of aldrin to dieldrin, but reduced production of other metabolites, and growth inhibition negated. Increasing volumes of 2-methoxyethanol had detrimental effect on growth and uptake and metabolism. Dieldrin production maximal during rapid growth phase and probably independent of other conversions.  相似文献   

2.
As reported previously squamous cell differentiation of rabbit tracheal epithelial (RTE) cells in culture is a multi-step process. This program of differentiation is inhibited by retinoic acid and retinol; retinoic acid is about 100 times more effective than retinol. To examine the metabolism of these agents in this in vitro model system, RTE cells were grown in the presence of all-trans-[3H]retinol or all-trans-[3H]retinoic acid and their metabolites analyzed by high-pressure liquid chromatography. RTE cells converted most of the retinol to retinyl esters, predominantly retinyl palmitate. A small fraction was metabolized to polar compounds, one of which coeluted with retinoic acid. After methylation this compound eluted as 13-cis-methyl retinoate and as all-trans-methyl retinoate. Conversion to 13-cis-retinol was also observed. All-trans-retinoic acid was rapidly taken up by RTE cells and converted to more polar (peak 1) and less polar (peak 3) metabolites. A proportion of all-trans-[3H]retinoic acid was metabolized to 13-cis-[3H]retinoic acid. These metabolic reactions appeared to be constitutive and were not induced by pretreatment with retinoic acid. The peak 1 metabolites were rapidly secreted into the medium whereas the peak 3 metabolites were retained by the cells and were not detected in the medium. Alkaline hydrolysis of the metabolites in peak 3 yielded retinoic acid, indicating the formation of retinoyl derivatives. Our results establish that RTE cells can convert all-trans-retinol to 13-cis-retinol and retinoic acid. RTE can metabolize all-trans-retinoic acid to 13-cis-retinoic acid and to an unidentified ester of retinoic acid.  相似文献   

3.
1. Studies were carried out in vitro with the livers of Japanese quail that had been fed from hatching on diets supplying their full requirements for vitamin D. 2. 25-Hydroxycholecalciferol was the major metabolite when liver homogenates of egg-laying female and oestrogen-treated quail of both sexes were incubated with [3H]cholecalciferol. 3. Very little 25-hydroxycholecalciferol was generated from liver homogenates of adult male and immature quail. Instead the cholecalciferol was converted into one or more compounds less polar than 25-hydroxycholecalciferol and into a number of highly polar metabolites, some of which were water-soluble. 4. Oestrogen not only stimulated the 25-hydroxylation of cholecalciferol but also protected both cholecalciferol and 25-hydroxycholecalciferol from degradation by the enzymic pathways active in immature and male birds. 5. These actions of oestrogen may be of physiological significance in relation to the high requirements of laying birds for 1,25-dihydroxycholecalciferol to support the intense metabolism of calcium associated with egg-shell calcification.  相似文献   

4.
Jamshidi AA  Girard D  Beaudry F  Goff AK 《Steroids》2007,72(13):843-850
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. The objective of this work was to characterize P4 metabolism by endometrial cells in vitro and determine if metabolites were able to modify prostaglandin secretion in response to oxytocin (OT). Endometrial epithelial and stromal cells were incubated with 3H-P4 or 3H-pregnenolone (P5) for 6 or 24 h. Metabolites in the medium were separated by HPLC. The results showed that P4 and P5 were converted to two major polar metabolites and a less polar metabolite that was identified as 5alpha- or 5beta-pregnanedione by LC/MS. Progesterone metabolism was similar in both stromal and epithelial cells. To determine if 5alpha- or 5beta-pregnanedione were able to modify PGF(2)alpha synthesis, cells were cultured with P4, 5alpha- or 5beta-pregnanedione (100 ng ml(-1)) for 48 h and then each group of cells was incubated for a further 4-6 h with or without OT (200 ng ml(-1)). Results showed that only P4 caused significant (P<0.001) increase in basal, but not OT-stimulated, PGF(2)alpha synthesis. OT binding assays showed no significant effect of progesterone or its metabolites on OTR concentration. In conclusion, bovine endometrial cells are able to metabolize pregnenolone and progesterone but neither 5alpha- nor 5beta-pregnanedione altered prostaglandin synthesis or OTR number in endometrial epithelial cells. These data suggest that 5-pregnanediones do not play a role in the regulation OT-stimulated PGF(2)alpha secretion during the bovine estrous cycle.  相似文献   

5.
Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8   总被引:3,自引:0,他引:3  
Liver microsomes obtained from nine subjects were found to metabolize retinol to polar metabolites, including 4-hydroxyretinol. In a reconstituted monooxygenase system containing human liver P450IIC8, retinol was converted to 4-hydroxyretinol and other polar metabolites, with a Km of 0.071 mM and a Vmax of 1.73 nmol/min/nmol P450. Neither P450IIC9 nor P450IIE1, two other purified human P450s, displayed significant retinol hydroxylase activity. Immunoblots performed with a monospecific antibody directed against human P450IIC8 revealed that appreciable amounts of this enzyme were present in human liver microsomes. The same antibody significantly inhibited retinol metabolism in liver microsomes and in the system reconstituted with P450IIC8. The system reconstituted with P450IIC8 also converted retinoic acid to polar metabolites. Thus, this study shows, for the first time, metabolism of two physiologic substrates by a human liver cytochrome P450 related to a group of "constitutive" rodent P450s believed to participate in the metabolism of endogenous compounds. Through its involvement in vitamin A metabolism, P450IIC8 may participate in maintaining the balance between those vitamin A concentrations that promote cellular integrity (and oppose the development of cancer) and those concentrations that cause cellular toxicity.  相似文献   

6.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

7.
The in vitro metabolism of all-trans-[11,12-3h]retinoic acid to several more polar compounds has been demonstrated in a hamster tracheal organ culture system. The production of these metabolites is dependent on the presence of tissue. The physiological significance of these compounds is shown by the cochromatography of several of the in vitro formed metabolites synthesized from [carboxy-14C]retinoic acid with metabolites isolated from the intestine and urine of hamsters previously injected with 0.1 to 1.5 microgram of [3H]retinoic acid. One of the metabolites shows about one-tenth the biological activity of all-trans-retinoic acid when tested in a hamster tracheal organ culture assay. This biologically active metabolite is converted by the hamster trachea in vitro to a biologically inactive metabolite.  相似文献   

8.
Summary Liver cells were prepared from rats fed a rachitogenic diet to investigate the hepatic metabolism of [ — 1,2 —3H2] vitamin D3. Rat hepatocytes suspended in Hanks medium rapidly took up labeled vitamin D3 from the incubation medium and converted this sterol to various metabolites, including 25-hydroxy vitamin D3 (25-OH-D3). There was a steady increment in the cellular production of 25-OH-D3 and of the more polar metabolites of vitamin D3 over 3 hr of incubation as determined by thin layer chromatography. Neither the addition of cyclic nucleotides or dexamethasone to, nor the removal of calcium or phosphate from the medium resulted in changes in the rate of conversion of vitamin D3 to its products. Rats pretreated with sodium diphenylhydantoin converted labeled vitamin D3 to its metabolites at the same rate as control rats. These data indicate that isolated liver cells retain the capacity for vitamin D3 hydroxylation, but suggest that the rate of this process does not undergo rapid changes in response to metabolic stimulation.Recipient of Research Career Development Award 1 K04 HL-00089.  相似文献   

9.
Incubation of 15,16-dihydrocyclopenta[a]phenanthren-17-one and its carcinogenic 11-methyl homolog with rat liver microsomes led to similar patterns of metabolites. The carcinogen was the more slowly metabolized, but both ketones gave the corresponding 15-hydroxy derivatives, together with small quantities of the isomeric 16-ols. The 11-hydroxymethyl-17-ketone also occurred as a minor carcinogen metabolite. Incubation of the carcinogen with rat liver homogenates caused more extensive metabolism. The ratio of mono-ols to more polar metabolites was similar with homogenates from untreated and methylcholanthrene-induced rats, but increased metabolism to polar derivatives was observed after phenobarbitone induction.  相似文献   

10.
Five milligrams of [5,6,8,9,11,12,14,15-3H8]-leukotriene B4 (LTB4) (1.68 Ci/mmol) were infused into a monkey over a three hour period. Twenty-five per cent of the infused 3H-activity was recovered in the urine during the twenty hours of collection. Plasma and urinary metabolite volatility studies revealed that in contrast to previously studied eicosanoids, more than 70% per cent of the infused LTB43H-label was converted to tritiated water. The major nonvolatile urinary metabolite of LTB4 representing 0.8% of the infused material was identified as 20-OH-LTB4. LTB4 was not excreted in the urine. Other nonvolatile metabolites of LTB4 representing less than 0.4% each of the infused material were isolated from the urine. While there was an adequate quantity of some of these metabolites for partial characterization, there was insufficient material for structural elucidation. Further studies were performed in rabbits in which either LTB4 or the structurally related compound 8,15-dihydroxyeicosatetraenoic acid (8,15-diHETE) were infused intravenously. In these rabbits the metabolism of LTB4 and 8,15-diHETE was similar to that in the monkey with greater than 80% of the infused 3H-activity converted to tritiated water. These studies suggest that leukotriene B4 and structurally related compounds undergo extensive degradation in vivo via the β-oxidation system.  相似文献   

11.
To evaluate the peroxisomal requirement for beta-oxidation of hydroxyeicosatetraenoic acids (HETES), we tested 5-, 12- and 15-HETE oxidation in wild-type and mutant Chinese hamster ovary (CHO) cells. Mutant CHO cells contain peroxisomal ghosts, have random cytosolic localization of catalase and lack two of the enzymes necessary for peroxisomal beta-oxidation. Reverse-phase HPLC indicated that 33% of 12-HETE radioactivity was converted by wild-type CHO cells during a 2 h incubation to one major and several minor polar metabolites. Wild-type CHO cells also converted 15-HETE to one major and several minor polar metabolites. Neither 12- nor 15-HETE were converted to any metabolites by the mutant CHO cell lines, despite appreciable cellular uptake of these hydroxyeicosanoids. 5-HETE was not converted to any metabolic products by either the wild-type or the mutant CHO cells. Docosahexaenoic acid beta-oxidation was substantially reduced in the mutants as compared to the wild-type cells, palmitic acid beta-oxidation was reduced to an intermediate extent in the mutants, but octanoate beta-oxidation and citrate synthase activity were not impaired. Protein immunoblotting for mitochondrial manganese superoxide dismutase indicated a single band of identity at 20 kDa in both wild-type and mutant CHO cells. Since mutant CHO cells fail to convert 12- and 15-HETE to oxidative metabolites but contain normal mitochondrial enzymatic activities, intact peroxisomes appear to be the organelle responsible for HETE oxidation.  相似文献   

12.
A mixture of tritiated and deuterated gibberellins (GAs) was injected into elongating shoots of Sitka spruce [ Picea sitchensis (Bong.) Carr.] grafts grown under environmental conditions that were either inductive (heat and drought, HD) or non-inductive (cool and wet, CW) for flowering. The metabolites were purified by high performance liquid chromatography (HPLC), detected by liquid scintillation counting of aliquots of collected fractions and identified by gas chromatography–mass spectrometry (GC-MS). Deuterated GA9 was converted to deuterated GA4, deuterated GA34, and deuterated GA1 in both treatments. Deuterated GA4 was metabolized to deuterated GA34 and deuterated GA1 in the CW material, but only deuterated GA1 was detected in the HD material. The amount of detected metabolites was higher in the HD material, caused by a higher rate of metabolism and/or smaller losses of the metabolites during sample purification. GA1 was converted to a polar unidentified metabolite in both treatments, but to a higher degree in the CW treatment.  相似文献   

13.
The effect of light on the metabolism of [14C]kaurene in light-requiring lettuce seeds (Lactuca sativa L. cv Grand Rapids) was investigated. Seeds were soaked in a solution of [14C]ent-kaurene in methylene chloride with 0.01% Tween-20, dried, and incubated in 20% polyethylene glycol (PEG) to prevent seedling development. Labeled metabolites were extracted and analyzed by high performance liquid chromatography and gas chromatography-radio counting. [14C]ent-Kaurenol and [14C]ent-kaurenal were identified in seeds incubated in constant white light, while no ethyl acetate-soluble metabolites were found in seeds incubated in the dark. In time course experiments using acid scarified seeds, metabolism began after 18 hours of incubation and greatly increased after 24 hours of incubation in 20% PEG. By 48 hours, several unidentified, more polar metabolites were found. Germination was induced in seeds imbibed in 20% PEG by 4 hours of red or 4 hours of white light following 20 hours in the dark, and was fully reversed by 2 hours of far red light. However, in metabolism experiments, [14C]ent-kaurene oxidation was observed only with constant white light. These results indicate that although ent-kaurene oxidation is a light sensitive step in the biosynthesis of gibberellins in Grand Rapids lettuce seeds, ent-kaurene metabolism is not required for light-induced germination.  相似文献   

14.
Abstract

3′,5′-Di-O-benzoyl-2′-O-(tetrahydropyran-2-yl)uridine and 3′,5′ -di-O-benzoyl-N 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)guanosine are converted into-N 3-anisoyl-2′-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O 6-diphenyl carbamoylN 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)- guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N 3-anisoylation and O 6-diphenylcarbamoylation, followed by 3′,5′-di-O-debenzoylation.  相似文献   

15.
A chitin-synthesizing cockroach cell line (UMBGE-4) previously shown to secrete ecdysteroids was analyzed for its ability to metabolize potential precursors of ecdysone (e.g., 2-deoxyecdysone, 2,22-dideoxyecdysone, 2,22,25-trideoxyecdysone, and cholesterol). All, except cholesterol, were actively metabolized by UMBGE-4 cells. However, all but 2-deoxyecdysone were converted to polar and hydrolyzable metabolites, and not to ecdysone. Labeling with cholesterol was unsuccessful. Labeling experiments with molting hormones, i.e., ecdysone and 20-hydroxyecdysone, confirmed that this cell line can metabolize ecdysteroids and allowed identification of some of the products. Molting hormones were converted into acetate conjugates and polar conjugates which were often double-conjugates, i.e., polar conjugates of acetate conjugates. Labeling experiments with ecdysone demonstrated that this cell line possesses a low ecdysone 20-hydroxylase activity. The capacity of UMBGE-2 cells, which do not synthesize chitin or ecdysteroids, was also examined. Neither ecdysone nor 20-hydroxyecdysone was significantly metabolized by UMBGE-2 cells. 2-Deoxyecdysone and 2,22-dideoxyecdysone were very slowly metabolized respectively to more polar compounds.  相似文献   

16.
A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.  相似文献   

17.
Chinese hamster ovary (CHO) cells convert [9,10-3H]myristic acid ([3H]14:0) to several lipid-soluble, radioactive metabolites that are released into the medium. The main products are lauric (12:0) and decanoic (10:0) acids. Some of the 12:0 formed also is retained in cell lipids. Similar metabolites are not synthesized from palmitic (16:0), oleic (18:1), or arachidonic (20:4) acids, and the addition of these fatty acids does not reduce the conversion of [3H]14:0 to 12:0. Two peroxisome-deficient CHO cell lines do not convert [3H] 14:0 to any polar metabolites, but, they elongate, desaturate, and incorporate [3H]14:0 into intracellular lipids and proteins normally. While BC3H1 muscle cells convert some [3H]14:0 to 12:0, they also produce at least nine lipid-soluble polar products from [3H]12:0. These findings suggest that a previously unrecognized function of myristic acid is to serve as a substrate for the synthesis of 12:0, which can be either secreted into the medium or converted to other oxidized metabolites. The absence of this peroxisomal oxidation pathway, however, does not interfere with other aspects of myristic acid metabolism, including protein myristoylation.  相似文献   

18.
In unparasitized 4th and 5th-instar larvae of Trichoplusia ni and in 4th-instar larvae parasitized by Chelonus sp. 20-hydroxyecdysone, 20,26-dihydroxyec-dysone, and 20-hydroxyecdysonoic acid were the predominant metabolites formed 2 h after injection of [3H]ecdysone. Other unidentified metabolites were seen, but none seemed to be specific for either parasitized or unparasitized larvae. The major difference between parasitized and unparasitized larvae was seen with respect to the quantity of apolar (unidentified) and polar metabolites (20-hydroxyecdysonoic acid and unidentified ones), which were produced to a greater extent in parasitized larvae. Ecdysone was rapidly converted into 20-hydroxyecdysone and the other polar metabolites in all stages investigated, and the parasitoid seemed not to affect the conversion of ecdysone into 20-hydroxyecdysone. When analyzing the fate of [3H]ecdysone in host and parasite separately, at a stage when the parasite drinks hemolymph of its host, we observed that 10–20% of the radioactivity was recovered from the parasitoid. Analysis of the parasitoid's ecdysteroids revealed that ecdysone and 20-hydroxyecdysone represented only a small proportion of the recovered labeled ecdysteroids, the majority being apolar and polar metabolites. Our data suggest that the parasitoid takes up ecdysteroids from its host, converts them, and to some extent releases apolar metabolites into the host.  相似文献   

19.
The aim of this trial was to evaluate the feasibility of using tall fescue (Festuca arundinacea) and alfalfa (Medicago sativa) for phytoremediation of dieldrin. Experimental trial was carried out in greenhouse with temperature and light control. Each tested crop were seeded in individual pots (10 plants/pot) filled with contaminated soil (47 microg/kg dieldrin) and uncontaminated soil collected in sites located in the province of Latina (Italy). Samples of soil, root, and aerial part of plants were analysed at 3 and 6 months after seeding. The analytical determinations in soil and plant samples were carried out by GLC-ECD and confirmed by GLC-MS. After 6 months in the greenhouse, recoveries of dieldrin from soil planted with tall fescue and alfalfa were significantly lower than recoveries in unplanted control soil. Dieldrin residue values in root did not differ between the two different sampling times for each forage crop tested, but they were always higher in fescue than in alfalfa. Residue levels in aerial part were low (< 10 microg/kg) in the two forage crops. Preliminary results seem to confirm the ability of tested plants to enhance dissipation of dieldrin in soil at low level of contamination.  相似文献   

20.
It has been shown by us and others that progesterone inhibits the growth of Trichophyton mentagrophytes and that the organism escapes from this inhibition over time. We report here studies which show that escape from growth inhibition is related to the enzymatic transformation of progesterone to polar metabolites. Isolation and identification of the progesterone metabolites confirm the production of 15 alpha-hydroxyprogesterone. In addition, three other metabolites were isolated. Two of these were determined to be 1-dehydroprogesterone and 11 alpha-hydroxyprogesterone. The third metabolite was a 1-dehydro-hydroxyprogesterone, but the location of the hydroxyl group could not be determined unequivocally. Studies using authentic 15 alpha-hydroxyprogesterone, 1-dehydroprogesterone, and 11 alpha-hydroxyprogesterone reveal that these derivatives are significantly less inhibitory to the growth of T. mentagrophytes than progesterone. Pretreatment of organisms with progesterone augments the rate of metabolism and enhances escape. We have described previously a progesterone-binding protein (PBP) in cytoplasmic extracts of T. mentagrophytes and hypothesized that progesterone mediates growth inhibition by binding to the PBP of this organism. The relative binding affinity that progesterone and its metabolites display for PBP correlates with the relative growth inhibitory potency of these compounds. These results suggest that metabolism of progesterone to more polar and less inhibitory compounds, which exhibit lower affinity for PBP, is the mechanism of escape from progesterone-mediated inhibition of growth in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号