首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 10(1) to 10(4), but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty-nine mtDNA nucleotide-substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2-5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide-substitution haplotypes and length-variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once-glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five-region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.  相似文献   

2.
不同产地中华鳖的线粒体控制区序列分析及结构比较   总被引:2,自引:0,他引:2  
采用PCR特异引物,扩增了两产地中华鳖(Pelodiscus sinensis)个体的mtDNA控制区(CR)及其邻近片段,测序获得了长度分别为1830bp和1630bp的序列。结合GenBank中已发表的韩国产中华鳖mtDNA的CR区序列,比较了3个产地中华鳖的CR区结构。分析显示:中华鳖不同产地mtDNA CR区DNA中的A+T含量分别为60.5%、63.6%和64.8%,它们的5′、3′末端以及CSB1-CSB2之间均存在丰富的可变数目串联重复序列(variable numbers oftandem repeats,VNTR)。基于mtDNA CR区序列和结构分析,显示中华鳖不同产地的野生个体中存在丰富的遗传多样性。  相似文献   

3.
Complete DNA sequences of the control region revealed a more fine-scale genetic structuring within and among Austrian brown trout Salmo trutta populations providing the opportunity for gene frequency analyses in the phylogeographic context. Ninety-two individuals (75%) were assigned to nine Danubian haplotypes and 31 individuals (25%) comprised seven Atlantic haplotypes of northern European origin. Three of the Atlantic haplotypes were also found in an Austrian hatchery breeding stock.  相似文献   

4.
Animal mitochondrial DNA has proved a valuable marker in intraspecific systematic studies. However, if nucleotide sequence heterogeneity exists at the individual level, its usefulness will be much reduced. This study demonstrates that the presence of highly conserved non-coding mitochondrial sequences in the nuclear genome of Schistocerca gregaria greatly impairs the use of mtDNA in population genetic studies. Caution is called for in other organisms; and it seems necessary to check for conserved nuclear copies of mitochondrial sequences before launching into a large scale analysis of populations using mtDNA as a genetic marker. Experimental procedures are suggested for this purpose.  相似文献   

5.
Animal mitochondrial DNA is normally inherited clonally from a mother to all her offspring. Mitochondrial heteroplasmy, the occurrence of more than one mitochondrial haplotype within an individual, can be generated by relatively common somatic mutations within an individual, by heteroplasmy of the oocytes, or by paternal leakage of mitochondria during fertilization of an egg. This biparental inheritance has so far been reported only in mice, mussels, Drosophila, and humans. Here we present evidence that paternal leakage occurs in a bird, the great tit Parus major. The major and minor subspecies groups of the great tit mix in the middle Amur Valley in far-eastern Siberia, where we found a bird that possessed the very distinct haplotypes of the two groups. To our knowledge this is the first report of paternal leakage in birds.  相似文献   

6.
7.
The number of repeats in repetitive DNA like micro‐ and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.  相似文献   

8.
We present the first comprehensive analysis of the crocodilian control region. We have analyzed sequences from all three families of Crocodylia (Crocodylidae, Gavialidae, Alligatoridae), incorporating all genera except Paleosuchus and Melanosuchus. Within the control region of other vertebrates, several sequence motifs and their order appear to be conserved. Herein, we compare aligned crocodilian D-loop sequences to homologous sequences from other vertebrates ranging from fish to birds. Among other findings, we have discovered that while domain I tends to be shorter than the same region in mammals and birds, it contains sequences similar in structure to both the goose-hairpin and termination associated sequences (TAS). Domain II is highly conservative with regard to size among the taxa examined and contains several of the conserved sequence boxes characterized in other vertebrates. Domain III contains several interesting sequence motifs including tandemly repeated sequences, a long poly-A region in the Crocodylidae, and possible bidirection promoter sequences.  相似文献   

9.
Sequencing of the complete mitochondrial DNA control region from 31 samples of the Eurasian otter, Lutra lutra , enabled us to establish the length and structure of this fragment, as well as to describe, for the first time, the RS3 repetitive region located at the 3' end. In addition, genetic variability of the 5' end was examined in 63 individuals, 57 of which were wild otters from the Iberian Peninsula and six captive reared otters. This analysis resulted in extremely low variability. All the samples from the Iberian Peninsula share a single haplotype, Lut 1, the most common haplotype in Europe. Captive otters showed two haplotypes: Lut 3, which has been described in wild otters from eastern Germany, and Lut 6, an haplotype not described to date. Higher variability was observed in the repetitive RS3 region. The tandem repeat was composed of an array of ten repeat units of 22 bp with differences in the repetitive motifs that differed in the arrays of different specimens. In total, 20 different haplotypes from 31 individuals were found. However, the geographical distribution of these haplotypes did not generate a phylogeographical signal. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 397–403.  相似文献   

10.
11.
12.
The mitochondrial DNA of the European rabbit (Oryctolagus cuniculus) contains a tandem array of 153-bp repeats in the vicinity of the replication origin of the H-stand. Variation among molecules in the number of these repeats results in inter- and intraindividual length polymorphism (heteroplasmy). Generally, in an individual, one predominant molecular type is observed, the others representing a low percentage of the mtDNA content. At the tissue level, we observe a particular distribution of this polymorphism in the gonads compared with liver, kidneys, or brain, implying a relationship between the differentiation status of the cells and the types of new mtDNA molecules which appear and accumulate during lifetime. Similar tandem repeats were also found in the mtDNA noncoding region of European hares (Lepus europaeus), a cottontail (Sylvilagus floridanus), and a pika (Ochotona rufescens). The lengths and the sequences of these units evolve rapidly and in a concerted way, but the number of repeats is maintained in a narrow range, and an internal 20-bp segment is highly conserved. Constraints restrict the evolution of the primary sequence of these repeated units, the number of which is probably controlled by a stabilizing selection.   相似文献   

13.
The genomes of many species are dominated by short sequences repeated consecutively. It is estimated that over 10% of the human genome consists of tandemly repeated sequences. Finding repeated regions in long sequences is important in sequence analysis. We develop a software, LocRepeat, that finds regions of pseudo-periodic repeats in a long sequence. We use the definition of Li et al. 1 for the pseudo-periodic partition of a region and extend the algorithm that can select the repeated region from a given long sequence and give the pseudo-periodic partition of the region.  相似文献   

14.
This study reports a primer set for amplifying a partial fragment of about 610 bp in the fast mutating mitochondrial control region in shrimps of the genus Penaeus (Decapoda: Penaeidae). The utility of this amplified fragment for studying population differentiation and structuring, compared with more conservative mitochondrial genes (16S rRNA and COI), was explored in P. merguiensis populations over a vast geographical range based on sequence and RFLP analyses. The results indicate that the mitochondrial control region provides more informative sites and reveals more haplotypes, making it most useful for evaluating genetic variations within and between populations of Penaeus species.  相似文献   

15.
Phylogenetic inference of mitochondrial control region (501 bp) of 167 individuals from 12 regional populations revealed that Chinese swamp eels fell into five genetic lineages, Lineage A, B, C, D and E. Lineage A was speculated to share the same mitochondrial ancestors with the populations from Taiwan Island. Lineage C harboured most of the haplotypes (39/60) of populations and may have experienced population expansion. The distribution pattern of Lineage C from east to west regions may have resulted from the occurrence of the major glaciation and inter‐regional introduction. Lineage A, B and E inhabiting coastline regions were immune from the expansion of Lineage C due to isolation from inland areas blocking gene flow between inland and coastal populations. On the other hand, Chinese swamp eels were revealed to be maintaining substantially differentiated population structures, while three populations from the Sichuan basin (MY, LC and YA) were genetically closely related. This was attributed to the geographical isolation of Sichuan populations from other populations, facilitating gene flow among the three populations from the Sichuan basin.  相似文献   

16.
The number of tandem repeats in the mitochondrial control region were used to differentiate the Red-backed Shrike Lanius collurio , Woodchat Shrike Lanius senator , Great Grey Shrike (subspecies Lanius excubitor excubitor ) and the Southern Grey Shrike (subspecies L. meridionalis meridionalis , L. m. koenigi, L. m. pallidirostris and L. m. aucheri ). The Red-backed and Woodchat Shrikes lacked repeats whereas the Great Grey and Southern Grey had two, three and 2 + 3 repeats. A subspecies of Southern Grey ( L. m. koenigi ) had 2 + 3 + 4 repeats. These findings are discussed in terms of the taxonomy of the Lanius genus, especially with respect to the Great Grey and Southern Grey Shrikes.  相似文献   

17.
A tandemly repetitive sequence family (AbS1) and a repetitive sequence (Hd) forming part of a larger dispersed element (dorf-1) ofAnemone blanda were characterised. TheAbS1 satellite sequence family is located in all 4,6-diamidino-2-phenylindole (DAPI) positive intercalary heterochromatic bands and in the DAPI positive heterochromatic terminal region of chromosome 3, while the dispersedHd homologous sequences are preferentially associated with euchromatic chromosome regions. The major component of theAbS1 satellite isAbS1-H1 with a basic repeat unit of 1640 bp; a minor fraction (AbS1-H5) consists of 320 bp units. A subsection of theAbS1-H1 repeat unit exhibits homologies to the 25S rRNA gene of flowering plants suggesting that the 1.64 kb satellite was generated by amplification of a precursor satellite and/or single copy sequence together with an rDNA fragment. The rDNA homologous region is considered to evolve at a rate similar to pseudogenes and thus the age of this satellite DNA fraction can be roughly estimated as about 27 million years.The dispersed repeated sequenceHd (about 1300 bp) is associated with the 8 kb elementdorf-1. A. blanda dorf-1 constitutes about 0.2% of the genome (3×104 copies), is bounded by identical long terminal repeats, and exhibits partial homology to theLilium gypsy-type elementdell, but has yet to be confirmed as a retrotransposon. In contrast to theAbS1 satellite sequence family,Hd homologous sequences were found not only inA. apennina, the closest relative ofA. blanda, but also inA. nemorosa andA. ranunculoides indicating that a progenitor sequence ofdorf-1 was present in a common ancestor before speciation ocurred.  相似文献   

18.
Complete sequencing of the mitochondrial control region was undertaken among brown trout Salmo trutta from North Atlantic areas where previous studies, based on smaller mtDNA fragments, failed to detect any phylogeographic signal. Comparison of sequences suggests that brown trout in the Iberian Peninsula and Scandinavia belong to largely divergent evolutionary units.  相似文献   

19.
The issue of mitochondrial heteroplasmy has been cited as a theoretical problem for DNA barcoding but is only beginning to be examined in natural systems. We sequenced multiple DNA extractions from 20 individuals of four Hawaiian Hylaeus bee species known to be heteroplasmic. All species showed strong differences at polymorphic sites between abdominal and muscle tissue in most individuals, and only two individuals had no obvious segregation. Two specimens produced completely clean sequences from abdominal DNA. The fact that these differences are clearly visible by direct sequencing indicates that substantial intra-individual mtDNA diversity may be overlooked when DNA is taken from small tissue fragments. At the same time, differences in haplotype distribution among individuals may result in incorrect recognition of cryptic species. Because DNA barcoding studies typically use only a small fragment of an organism, they are particularly vulnerable to sequencing bias where heteroplasmy and haplotype segregation are present. It is important to anticipate this possibility prior to undertaking large-scale barcoding projects to reduce the likelihood of haplotype segregation confounding the results.  相似文献   

20.
The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species’ range. Eighteen different haplotypes were defined in the ≈ 860 bp mtDNA control region, as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 ± 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene flow currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号