首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel nondetoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates.  相似文献   

2.
Scanning electron microscopy of in vitro reaggregation of trypsin-dissociated neural retina cells from 10-day chick embryos revealed that filopodial projections participate in the assembly of the dispersed cells into clusters. Freshly dissociated cells displayed numerous elongated, randomly projecting filopodia. With the onset of cell reaggregation these filopodia bridged and connected distant cells becoming shorter as the cells came together and formed aggregates. In 24-h cell aggregates only short microvilli were seen, mostly on cell surfaces facing the periphery of the aggregate. Cells dissociated from retina tissue pre-treated with inhibitors of protein synthesis, or cells exposed to these inhibitors immediately after dissociation were mostly devoid of filopodial projections; such cells failed to re-aggregate histotypically. Thus, metabolic and biosynthetic processes are required for the changes in the cell periphery which result in formation or maintenance of filopodia, and which enable trypsin-dissociated cells to reform histotypic associations. Possible relationships between the formation of filopodia and histotypic reaggregation of cells is discussed.  相似文献   

3.
A pulse-treatment of embryos of Picea abies (L.) Karst with cytokinin efficiently and reproducibly induces the coordinate de novo formation of bud primordia from subepidermal cells. The cytokinin treatment also affects the germinative development of the embryo; chloroplast maturation is delayed, and cell elongation is completely suppressed. We have analyzed the protein patterns in developing spruce embryos with the aim of identifying proteins which are differentially synthesized during early bud-differentiation and germination. In addition to a set of major seed storage proteins and a large set of constitutively synthesized proteins, we distinguish two sets of proteins that showed different patterns of synthesis in relation to germination. One was synthesized at high rates during germination, and the second set during post-germinative seedling development. Twenty-two proteins were differentially synthesized in the bud-induced versus the germinating embryos. Interestingly, all 22 belonged to either the germination phase-abundant or the seedling protein sets, whereas the constitutively synthesized proteins were unaffected by the treatment. Proteins synthesized exclusively in bud-induced embryos were not found. In total, the bud-induction treatment caused a maintenance of a protein synthesis pattern typical for the germination phase in the nontreated embryos, and the de novo formation of buds was not preceded by a major change in gene expression in the tissue.  相似文献   

4.
5.
6.
Cytoplasmic dynein 1 (dynein) is a minus end–directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs’ role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.  相似文献   

7.
8.
The yeast Saccharomyces cerevisiae is able to use some biotin precursors for biotin biosynthesis. Insertion of a sulfur atom into desthiobiotin, the final step in the biosynthetic pathway, is catalyzed by biotin synthase (Bio2). This mitochondrial protein contains two iron-sulfur (Fe/S) clusters that catalyze the reaction and are thought to act as a sulfur donor. To identify new components of biotin metabolism, we performed a genetic screen and found that Isa2, a mitochondrial protein involved in the formation of Fe/S proteins, is necessary for the conversion of desthiobiotin to biotin. Depletion of Isa2 or the related Isa1, however, did not prevent the de novo synthesis of any of the two Fe/S centers of Bio2. In contrast, Fe/S cluster assembly on Bio2 strongly depended on the Isu1 and Isu2 proteins. Both isa mutants contained low levels of Bio2. This phenotype was also found in other mutants impaired in mitochondrial Fe/S protein assembly and in wild-type cells grown under iron limitation. Low Bio2 levels, however, did not cause the inability of isa mutants to utilize desthiobiotin, since this defect was not cured by overexpression of BIO2. Thus, the Isa proteins are crucial for the in vivo function of biotin synthase but not for the de novo synthesis of its Fe/S clusters. Our data demonstrate that the Isa proteins are essential for the catalytic activity of Bio2 in vivo.  相似文献   

9.
The proposal made in the preceding paper that the species-specific shape of Ochromonas is mediated by cytoplasmic microtubules which are related to two nucleating sites has been experimentally verified. Exposure of cells to colchicine or hydrostatic pressure causes microtubule disassembly and a correlative loss of cell shape in a posterior to anterior direction. Upon removal of colchicine or release of pressure, cell shape regenerates and microtubules reappear, first in association with the kineto-beak site concomitant with regeneration of the anterior asymmetry, and later at the rhizoplast site concomitant with formation of the posterior tail. It is concluded that two separate sets of cytoplasmic tubules function in formation and maintenance of specific portions of the total cell shape. On the basis of the following observations, we further suggest that the beak and rhizoplast sites could exert control over the position and timing of the appearance, the orientation, and the pattern of microtubule distribution in Ochromonas. (a) the two sites are accurately positioned in the cell relative to other cell organelles; (b) in regenerating cells microtubules reform first at these sites and appear to elongate to the cell posterior; (c) microtubules initially reappear in the orientation characteristic of the fully differentiated cell; (d) the two sets of tubules are polymerized at different times, in the same sequence, during reassembly or resynthesis of the microtubular system. Experiments using cycloheximide, after a treatment with colchicine, have demonstrated that Ochromonas cannot reassume its normal shape without new protein synthesis. This suggests that microtubule protein once exposed to colchicine cannot be reassembled into microtubules. Pressure-treated cells, on the other hand, reassemble tubules and regenerate the normal shape in the presence or absence of cycloheximide. The use of these two agents in analyzing nucleating site function and the independent processes of synthesis and assembly of microtubules is discussed.  相似文献   

10.
Development of preimplantation rabbit embryos in vivo and in vitro   总被引:3,自引:0,他引:3  
Qualitative patterns of protein synthesis in preimplantation rabbit embryos grown in vivo and in vitro were examined by SDS polyacrylamide gel electrophoresis followed by autoradiography. The results demonstrate that (1) most qualitative changes in the pattern of protein synthesis occur during cleavage, (2) the blastocyst period of development is characterized by a remarkably uniform and constant pattern of protein synthesis, and (3) the qualitative pattern of protein synthesis in embryos cultured in vitro from the 1-cell to the blastocyst stage is essentially identical to the pattern of protein synthesis in embryos grown to a comparable stage in vivo.These results indicate that no “special” maternal factors, such as uterine proteins, are required in vitro either for the qualitative changes in the pattern of protein synthesis during cleavage, or for the initial expression of a pattern of protein synthesis characteristic of the entire blastocyst period. From these studies we conclude that, once fertilized, the rabbit egg proceeds through cleavage and blastocyst formation on its own endogenous developmental program.  相似文献   

11.
Long-term potentiation in hippocampal neurons has stages that correspond to the stages of learning and memory. Early-phase (10–30 min) potentiation is accompanied by rapid increases in clusters or puncta of presynaptic and postsynaptic proteins, which depend on actin polymerization but not on protein synthesis. We have now examined changes in pre- and postsynaptic puncta and structures during glutamate-induced late-phase (3 hr) potentiation in cultured hippocampal neurons. We find that (1) the potentiation is accompanied by long-lasting maintenance of the increases in puncta, which depends on protein synthesis, (2) most of the puncta and synaptic structures are very dynamic, continually assembling and disassembling at sites that are more stable than the puncta or structures themselves, (3) the increase in presynaptic puncta appears to be due to both rapid and more gradual increases in the number of sites where the puncta may form, and also to the stabilization of existing puncta, (4) under control conditions, puncta of postsynaptic proteins behave similarly to puncta of presynaptic proteins and share sites with them, and (5) the increase in presynaptic puncta is accompanied by a similar increase in presumably presynaptic structures, which may form at distinct as well as shared sites. The new sites could contribute to the transition between the early and late phase mechanisms of plasticity by serving as seeds for the formation and maintenance of new synapses, thus acting as local “tags” for protein synthesis-dependent synaptic growth during late-phase plasticity.  相似文献   

12.
13.
Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1, 2, 3, 4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5, 6, 7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).  相似文献   

14.
Production and maintenance of extracellular matrix (ECM) is an essential aspect of endothelial cell (EC) function. ECM surfaces composed of collagen type IV and laminin support an atheroprotective endothelium, while fibronectin may encourage an atheroprone endothelium through inflammation or wound repair signaling. ECs maintain this underlying structure through regulation of protein production and degradation, yet the role of cytoskeletal alignment on this regulation is unknown. To examine the regulation and production of ECM by ECs with an atheroprotective phenotype, ECs were micropatterned onto lanes, which created an elongated EC morphology similar to that seen with unidirectional fluid shear stress application. Collagen IV and fibronectin protein production were measured as were gene expression of collagen IV, fibronectin, laminin, MMP2, MMP9, TIMP1, TIMP2, and TGF-β1. ECs were also treated with TNF to simulate an injury model. Micropattern-induced elongation led to significant increases in collagen IV and fibronectin protein production, and collagen IV, laminin, and TGF-β1 gene expression, but no significant changes in the MMP or TIMP genes. TNF treatment significantly increased collagen IV gene and protein production. These results suggest that the increase in ECM synthesis in micropattern-elongated ECs is likely regulated with TGF-β1, and this increase in ECM could be relevant to the atheroprotection needed for maintenance of a healthy endothelium in vivo.  相似文献   

15.
Only 20 of more than 250 biosynthetic amino acids are common (coded) constituents of contemporary protein. In this paper, several stages of evolution, both prebiotic and biotic, are examined for means by which other (non-proteinous) amino acids may have been selected against. Simulated prebiotic experiments indicate that some non-proteinous amino acids were present prebiotically, that they could be incorporated during the formation of prebiotic protein, and that they would function in such protein. Biotic selection is thus indicated.Non-proteinous amino acids currently are available via biosynthetic pathways for potential incorporation into bioprotein. Codon-anticodon interaction, peptidyl transferases, and elongation and termination factors of protein synthesis do not show the specificity needed to preclude non-proteinous amino acids. Highly specific recognition among amino acids, tRNAs, and activating enzymes is concluded to be why the kinds of amino acids in contemporary protein are limited to twenty.Some of several theories concerning the origin, nature and evolution of the genetic code can readily accommodate non-proteinous amino acids. Some evidence suggests that such amino acids were eventually eliminated from protein because they were less suitable than related proteinous amino acids. However, deterministic or “direct interaction” theories currently lack sufficient experimental support to answer how non-proteinous amino acids were precluded; such theories, being testable, probably have the most potential for providing an answer.  相似文献   

16.
Factors present in neural extracts or in media conditioned by neurons have been shown by others to increase both the number of acetylcholine receptors (AChRs) and the number of receptor clusters in cultures of embryonic skeletal muscle. We have recently shown that the glycoprotein, sciatin, exerts trophic effects on developing muscle in vitro. In the present study, we investigated the effect of sciatin on AChRs in aneural cultures of chick skeletal muscle. Sciatin caused a significant increase in the number of AChRs/dish as measured by binding of 125I-α-bungarotoxin (α-Btx) and in acetylcholinesterase (AChE) activity/dish in differentiating muscle cells. The increase in AChRs elicited by sciatin was due solely to increased receptor synthesis and incorporation. The rate of AChR synthesis in sciatin-treated cultures was as much as five times the control rate and was significantly reduced by cycloheximide (10 μM). AChR degradation was unaffected by the myotrophic protein. Although the number of AChRs/dish was increased by sciatin during myogenesis, AChR specific activity, expressed as picomoles 125I-α-Btx bound/mg cell protein, was only transiently increased by the myotrophic protein. This contrasted with AChE specific activity in sciatin-treated cultures which remained elevated throughout differentiation. Autoradiographs of 125I-α-Btx-labeled cultures showed that sciatin caused an increase in the number and size of AChR “hot spots” and maintained the integrity of these AChR clusters in aneural muscle cultures for up to 5 weeks. At this time control cultures had completely degenerated. The mechanism by which sciatin enhanced the synthesis of AChRs appeared to be distinct from that of tetrodotoxin (TTX), an agent which abolishes muscle activity. However, like theophylline, sciatin might evoke increased synthesis of AChRs via regulation of cyclic AMP since the myotrophic protein increased cAMP both in cells and in conditioned medium. The results of this study suggest that sciatin may be related to the diffusible factor(s) from motor neurons described by others which has trophic effects on AChRs. Furthermore, we suggest that this myotrophic protein may be responsible for the clustering of AChRs and maintenance of receptor clusters at neuromuscular junctions in developing avian muscle.  相似文献   

17.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

18.
Rehydration of Tortula ruralis in 2,4-dinitrophenol inhibits protein synthesis, polysome formation, and ATP production. Polysomes are conserved intact and are active in vitro in hydrated Tortula placed in this chemical, although in vivo protein synthesis is inhibited. Hydrated moss placed under nitrogen in the dark shows a reduced capacity for ATP and protein synthesis, but polysomes are conserved. During anaerobiosis in light, ATP and protein synthesis are unaffected. Rehydration of slow-dried Tortula in nitrogen in the dark results in reduced in vivo protein synthesis, but not polysome formation; this reduction is much less in the light. Slow-dried moss, but not fast-dried, has a greatly reduced ATP content in the dry state, but this rapidly returns to normal levels on rehydration. The prolonged burst in respiration observed previously on rehydration of Tortula is not paralleled by ATP accumulation. Changes in energy charge in all treatments tested follow the changes in ATP. The aquatic moss, Hygrohypnum luridum, which is intolerant to drought, loses ATP during fast drying and this is not replenished on subsequent rehydration.  相似文献   

19.
To elucidate the role of protein synthesis in DNA formation, E. coli R2 infected with phage T2 was studied as a model, employing chloramphenicol to inhibit protein synthesis. The following results were obtained. 1. Chloramphenicol inhibited protein synthesis but not synthesis of nucleic acids in uninfected bacteria. 2. Studies of the effect of chloramphenicol on phage maturation indicated a delay of 2 minutes between time of addition and cessation of phage growth. 3. The increase of DNA in phage-infected bacteria was completely suppressed by the addition of chloramphenicol within 2 minutes following infection. Addition at later times showed progressively less inhibitory action depending upon the time interval, and addition after the 10th or 12th minute showed no appreciable effect on DNA synthesis despite the cessation of intracellular phage formation and protein synthesis. 4. When chloramphenicol was added to infected cells the increase of resistance to UV stopped within 2 minutes, whether or not DNA synthesis continued. Thus evolution of resistance paralleled the rate of DNA synthesis achieved, but not the amount of DNA accumulated. 5. We conclude that in infected bacteria, protein synthesis is necessary to initiate DNA synthesis but is not essential for its continuation. The resistance to UV that characterizes infected cells near the midpoint of the latent period is not due to accumulation of DNA, but depends on some chloramphenicol-sensitive process (probably protein synthesis) completed at about the time the rate of DNA synthesis becomes maximal.  相似文献   

20.
The endoplasmic reticulum membrane complex (EMC) is a versatile complex that plays a key role in membrane protein biogenesis in the ER. Deletion of the complex has wide-ranging consequences including ER stress, disturbance in lipid transport and organelle tethering, among others. Here we report the function and organization of the evolutionarily conserved EMC (TbEMC) in the highly diverged eukaryote, Trypanosoma brucei. Using (co-) immunoprecipitation experiments in combination with mass spectrometry and whole cell proteomic analyses of parasites after depletion of select TbEMC subunits, we demonstrate that the TbEMC is composed of 9 subunits that are present in a high molecular mass complex localizing to the mitochondrial-endoplasmic reticulum interface. Knocking out or knocking down of single TbEMC subunits led to growth defects of T. brucei procyclic forms in culture. Interestingly, we found that depletion of individual TbEMC subunits lead to disruption of de novo synthesis of phosphatidylcholine (PC) or phosphatidylethanolamine (PE), the two most abundant phospholipid classes in T. brucei. Downregulation of TbEMC1 or TbEMC3 inhibited formation of PC while depletion of TbEMC8 inhibited PE synthesis, pointing to a role of the TbEMC in phospholipid synthesis. In addition, we found that in TbEMC7 knock-out parasites, TbEMC3 is released from the complex, implying that TbEMC7 is essential for the formation or the maintenance of the TbEMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号